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ABSTRACT

The MeV radiation front of gamma-ray bursts creates copious e� pairs as it propagates through an ambient me-
dium. The created pairs enrich the leptonic component of themedium by a large factor at distancesR < Rload � 1016 cm
from the burst center. The following blast wave sweeps up the pair-rich medium and then emits the observed
afterglow radiation. We find that the afterglow has a ‘‘memory’’ of e� loading outside Rload. The e

� remain in the
swept-up material and slowly cool down by emitting synchrotron radiation. They are likely to dominate the blast
wave emission in IR, optical, and UV bands during the first minutes of the observed afterglow. The e� afterglow is
described by a simple formula, which is derived analytically and checked by numerical integration of synchrotron
emission over the blast material; a suitable Lagrangian formalism is developed for such calculations. The main
signature of e� radiation is its flat (‘‘white’’) spectrum in a broad range of frequencies from IR to UVand possibly
soft X-rays. This radiation can be detected by the Swift satellite, which would enable new observational tests for the
explosion physics.

Subject headinggs: cosmology: miscellaneous — gamma rays: bursts — radiation mechanisms: nonthermal —
shock waves

Online material: color figures

1. INTRODUCTION

Cosmological gamma-ray bursts (GRBs) are produced by
powerful explosions in distant galaxies. It is not yet clear how the
explosion is triggered; however, its basic phenomenological pic-
ture has been established: an ultrarelativistic shell (‘‘fireball’’) is
ejected by a compact central engine. The expanding shell emits
the burst of �-rays, then sweeps up an ambient medium, and de-
celerates, producing the observed afterglow radiation. The af-
terglow is explained as synchrotron emission of nonthermal
electrons in the relativistic blast wave (for a recent review see
Piran 2004).

Thompson & Madau (2000) pointed out that an external me-
diummust be e� loaded and preaccelerated by the leading �-ray
front (prompt GRB radiation), which should affect the ensuing
shock wave. The effect is a result of �-ray transfer through the
optically thin medium (Beloborodov 2002, hereafter B02),
which involves a runaway of pair creation. A tiny fraction of
GRB radiation participates in this transfer; however, it impacts
dramatically the circumburst medium. The transfer problem
was solved in B02, and the number of loaded e� and the Lorentz
factor of the medium behind the �-ray front were calculated.
The loaded pairs were found to dominate the ambient medium
at radii R < Rload � 1:6 ;1016(E� /1053 ergs) cm, where E� is
the isotropic (4�) equivalent of the GRB energy.

The e� loading sets the stage for the immediately following
shock wave driven by the GRB ejecta. The shock heats and
accelerates the particles of the medium, and a nonthermal e�

population is expected to form behind the shock front, which
produces synchrotron radiation. The goal of the present paper is
to calculate emission from the pair-loaded postshock plasma in
the expanding blast wave.

This complicated problem was previously approached in a
few works. B02 evaluated the shock parameters at R < Rload

and found that the GRB afterglow should start with a brief and
bright optical signal; however, B02 did not calculate the ex-
pected light curve or spectrum of e� radiation. Then Li et al.
(2003) calculated the light curve considering the blast wave as a
single shell with an averaged e� density and a common electron
spectrum. This is not a good approximation as discussed in
detail below. In particular, at R > Rload , only a small fraction of
the blast wave material is dominated by pairs, and its emission
dramatically differs from the rest of swept-up material.
Most recently, Kumar & Panaitescu (2004) studied e�-loaded

blast waves. They focused on GRBs where the �-ray front only
partially overtakes the shock wave at Rload . A new effect appears
in that situation, which was neglected in Kumar & Panaitescu
(2004): the postshock e� overlap with the �-ray front and are
exposed to 0.1–1 MeV photons (keV in the plasma frame);
therefore e� are quickly cooled by inverse Compton scattering.
Most of the e� energy is then emitted by upscattering 0.1–1MeV
photons to GeV–TeV band, and their optical synchrotron emis-
sion is suppressed (Beloborodov 2005).
Whether the �-ray front still overlaps with the blast wave at a

radius of interest depends on the front thickness (proportional
to the duration of the prompt GRB) and the blast wave Lorentz
factor �.2 So, two qualitatively different regimes of early af-
terglows are possible:

1. ‘‘Long-burst’’ (or ‘‘thick-shell’’) regime where the prompt
GRB radiation overlaps the early blast wave. Then a strong GeV–
TeV flash should be produced, and the early optical emission is
suppressed.
2. ‘‘Short-burst’’ (or ‘‘thin-shell’’) regime where the prompt

�-rays early overtake the external shock wave, and e� creation

2 The �-ray front can be emitted when the explosion has a small radius, well
before the blast wave forms; however, they may still overlap at large radii
because the ejecta expands with almost the speed of light. The �-ray front is
faster by a small �v ¼ c/2�2 � 10�5c and completely overtakes the relativistic
blast wave at time R /ck�/�v.

A

1 Also at Astro-Space Center, Lebedev Physical Institute, Profsojuznaja 84/32,
Moscow 117810, Russia.
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and Compton cooling take place ahead of the shock. Then the
postshock plasma is not exposed to the prompt radiation and not
Compton cooled. A bright optical emission can be expected in
this situation.

In the present paper we focus on the short-burst regime.
GRBs that satisfy this condition have short durations tb and/or
modest Lorentz factors of the blast wave � (B02),

tb < 10
�

100

� ��2
Racc

1016 cm

� �
(1þ z)

2
s; ð1Þ

where Racc ¼ 5�1=2Rload is a characteristic radius where most of
the optical-emitting pairs are created and z is the cosmological
redshift of the burst. We develop a suitable Lagrangian for-
malism that describes the synchrotron emission of pair-loaded
blast waves and calculate the expected light curve and spectrum
of the early afterglow. We find two distinct emission compo-
nents produced at R > Rload: (1) the relict e

� component dom-
inating the early emission from IR to soft X-rays, and (2) the
recently shocked pair-free component that gives a standard
afterglow emission initially peaking in X-rays and later evolv-
ing to softer bands.

In x 2 we briefly describe the pair creation process and
the formation of blast wave in the pair-loaded medium behind
the �-ray front (details are found in B02). In x 3 we formulate the
emission problem for e�-loaded blast waves and develop their
Lagrangian description. Numerically calculated examples of
e�-loaded afterglows are given in x 4.

In x 5 we show that the e� component of afterglow emission
is described by a simple formula and practically independent of
the details of the shock wave physics. The case of a uniform am-
bient medium is elaborated in x 6. In the present paper we focus
on explosions in media of modest density n0 ¼ 0:1 103 cm�3.
Explosions in a high-density wind from a Wolf-Rayet progen-
itor will be considered in detail elsewhere. In that case, the e�

loading has a much stronger effect on the afterglow emission
(B02).

There are two shock fronts in a blast wave: forward and
reverse. The reverse shock emits one more component of the
early afterglow, which depends on the nature of the GRB ejecta.
Differences between emissions from the reverse shock and the
pair-loaded forward shock are discussed in x 7. The differences
are significant and may allow one to distinguish observationally
the two emission mechanisms when the Swift satellite provides
the early afterglow data.

2. PAIR LOADING BY THE �-RAY FRONT

A medium overtaken by a front of collimated �-rays is in-
evitably e� loaded. This happens because some �-rays Comp-
ton scatter off the medium and get absorbed by the primary
collimated radiation via reaction � þ � ! eþ þ e�.

The medium is optically thin, so only a tiny fraction of the
GRB radiation front scatters and turns into e�; however, the
number of created e� per ambient electron can be very large,
n� /n0 31. The column density of an expanding photon front
scales with radius as R�2; hence, the number of scattered pho-
tons per ambient electron is decreasing as R�2 and n� /n0 31 at
small R. The created e� do more scattering, which leads to an
exponential runaway of pair creation. There is a sharp boundary
Rload between the exponentially loaded e� region and the outer
pair-free region. The pair creation and scattering of GRB ra-
diation inside Rload are accompanied by momentum deposition
and the medium is accelerated radially away from the center.

The pair-loading factor n�/n0 and acceleration of an optically
thin medium in the �-ray front do not depend on n0 and can be
calculated starting with just one ambient electron and one am-
bient proton to which the electron is coupled. The e and p
components of the medium move always together to maintain
neutrality of the plasma. Any momentum communicated to e is
immediately shared with p, so that the effective mass of e is
me þ mp. As the �-ray front passes through, the electron com-
ponent is enriched by a number of additional e� (then the mass
per lepton is reduced) and altogether they acquire a Lorentz
factor �. This transformation is quick: it takes time�(� /c� 2) in
the fixed laboratory frame, during which the �-ray front over-
takes a given ambient electron.3 The thickness of the �-ray front
� is related to the observed duration of the prompt GRB tb by
tb ¼ (1þ z)� /c.

A schematic explosion picture is shown in Figure 1. The
radiation front leads the forward shock by a small distance4

l � R

4�2
TR ð2Þ

and changes the ambient medium just before it is shocked. The
medium ahead of the blast wave (but already overtaken by the
�-ray front) is described by the lepton number per ambient
proton Z and Lorentz factor �. The values Z ¼ 1 and � ¼ 1
would correspond to a static pair-free medium.

The variables Z and � are functions of only one parameter of
the front, �, which we now define. Let dE� /dS be the energy
column density of the �-ray front (ergs per centimeter). The
GRB is likely beamed, yet it is convenient to define its isotropic
equivalent E� ¼ 4�R2(dE� /dS ). When an ambient electron is
overtaken by the front, it scatters energy5 esc ¼ �T(dE� /dS ) ¼
E��T /4�R

2. The relevant dimensionless parameter is

� ¼ esc

mec2
¼ 65E�;53 R

�2
16 : ð3Þ

The functions Z(�) and �(�) were found numerically in B02.
They are calculated by solving the radiative transfer problem
coupled to the dynamic problem of the medium acceleration.
We briefly summarize the calculations here.

Two processes play important roles in the �-ray transfer:
Compton scattering � þ e� ! �sc þ e� and photon-photon ab-
sorption �sc þ � ! eþ þ e� (here � stands for a primary photon
and �sc for a scattered photon). The same processes determine
the deposited momentum and acceleration of the medium. The
medium remains optically thin, so only single scattering is
of interest, and the process �sc þ e� ! �sc þ e� is negligible.
Nevertheless, there is a nonlinearity in the problem because the
scattering opacity of the medium is affected by e� creation and
changes enormously across the front.

The problem would be simpler if the scattered photons in-
stantaneously converted to e� (Thompson & Madau 2000;
Mészáros et al. 2001); then there would be no need to solve the

3 The velocity difference between the radiation front and the accelerated
medium is (1� � )c � c /2� 2.

4 We assume that the shock wave is approximately adiabatic. Then �shock �ffiffiffi
2

p
�, where � is the Lorentz factor of the postshock material (which we hereafter

call ‘‘blast’’ for brevity), and l � R(1� �shock) ¼ R /2�2
shock ¼ R /4�2.

5 Accurate calculation of scattering includes the Klein-Nishina correction to
Thomson cross section �T; however, in the definition of �, it is convenient to use
�T, which is independent of photon energy.
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radiative transfer. However, the bulk of scattered photons never
convert to e� and escape. The formal absorption free path of a
scattered photon in the radiation front turns out to be k�� 3�,
which means that a scattered photon has a small chance � /k��
to create an e� pair. The exponential runaway of pair loading
occurs when the smallness of this chance is compensated by a
large number of scattered photons per electron, which requires a
small scattering free path of the electron in the radiation front,
kT�. The length of exponential e� loading is then a ¼
(kk��)

1=2 < �. The characteristic loading radius Rload is defined
by a ¼ �; kT�Tk�� at this radius.

At small R, the e�-loaded medium is accelerated to a sig-
nificant Lorentz factor � (not to be confused with the photon
symbol � in the reaction formulae). The photons scattered by
the accelerating medium have the collimation angle �� � ��1,
and their chances to convert to pairs become completely neg-
ligible. (A smaller angle between the scattered and primary pho-
tons implies a higher threshold for reaction �sc þ � ! eþ þ e�

and a smaller absorption opacity seen by the scattered photons.)
Therefore, e� loading at small radii is made by photons scat-

tered in a small leading portion of the front (where the medium
has not yet acquired �31) and propagated across the front.
The numerical solution to the transfer problem describes

what exactly happens with the medium in the radiation front.
The shell of ambient medium that is inside the front at a given
moment of time has a certain velocity profile �($) where
0 < $ < � is the distance from the leading edge of the front
(‘‘entrance’’). Themediumvelocity� increases from zero (� ¼ 1)
at the entrance$ ¼ 0 to its final value at the exit$ ¼ �. Lepton
number per proton, Z, also increases from Z ¼ 1 to its value be-
hind the front. The front structure is described by the same func-
tions �(� ) and Z(� ) that describe the front evolution with radius if
one substitutes � ¼ $ /k (B02). So, the front structure is described
by the same functions at different times; i.e., it is self-similar.
Since there is a gradient of the medium velocity inside the

front (layers at larger $ move faster), one might think that
caustics, i.e., internal shocks, can develop in the front. It never
happens at radii of interest. The radiation overtaking the me-
dium dictates its velocity, and the medium has no time to de-
velop a caustic because it quickly exits the front6 and is left
behind with a uniform Lorentz factor � (the exit � gradually
evolves on timescale �R /c because � ¼ � /k evolves as R�2 as
the front expands). The medium left behind the radiation front
is immediately picked up by the blast wave, on a timescale
�(R /c)(� /�) 2TR /c.
The exact numerical solution for �(� ) and Z(�) is well ap-

proximated by a simplified analytical model derived in B02 and
summarized in the next section.

2.1. Analytical Description of e� Loading

The exact Z(�) and �(� ) are approximated by the following
analytical formulae (see eqs. [49], [62], and [63] in B02; Z ¼
n�/n0 in B02 notation):

Z �ð Þ ¼

1

2
exp

�

�load

� �
þ exp � �

�load

� �� �
; � < �acc;

�

�acc

� �2
Zacc; �acc< �< 3�acc;

3
�

�acc

� �
Zacc; � > 3�acc;

8>>>>>>>><
>>>>>>>>:

ð4Þ

� �ð Þ ¼

1; � < �acc;

�

�acc

� �3
; �acc < � < 3�acc;

3
ffiffiffi
3

p �

�acc

� �3=2
; � > 3�acc;

8>>>>>><
>>>>>>:

ð5Þ

where �acc ¼ (5þ ln �e)�load,

Zacc ¼
1

2
exp

�acc
�load

� �
þ exp � �acc

�load

� �� �
¼ 74�e; ð6Þ

and �e is the electron mean molecular weight of the ambient
medium (�e ¼ 1 for hydrogen and �e ¼ 2 for helium or heavy

6 The exit time� /c� 2 is much shorter than R /c at R > Rgap (x 2.1). The fact
that no caustics develop in the front at R > Rgap formally follows from eq. (12)
in B02, which shows that density remains finite at all $, while a caustic would
correspond to infinite density. At an earlier stage, R < Rgap, which is not con-
sidered in this paper, caustics do develop (see B02).

Fig. 1.—Early stage of a GRBblast wave (R < Rload). The short-burst (or thin-
shell) regime is assumed:� < R /4�2 (cf. eq. [1]). The forward shock propagates
in the e�-loaded and preaccelerated medium left behind the �-ray front. The pair-
loading factor Z and Lorentz factor � of the preshock medium depend on the
current radius R of the explosion (see Fig. 2). The inset schematically showswhat
happens in the �-ray front: some of the �-rays are scattered, lose their collimation,
and get absorbed by the collimated �-rays, producing e�. The created pairs are
immediately Compton cooled in the �-ray front (B02), and the preshock medium
is relatively cold (kT < mec

2). The pairs are heated/accelerated when the forward
shock reaches them, and the postshock e� produce the broadband synchrotron
emission. Thewhole structure—radiation front, e�-loaded preshockmedium, blast,
and ejecta—has a small thickness �R /�2.
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ions). The numerical value of �load ¼ 20 30 depends on the
precise spectrum of the �-rays; however, all the other relations
remain the same.

The standard GRB spectrum is a broken power law with a
peak at h	 � mec

2,

F	 ¼ F1

h	

mec2

� ��
 1

; h	 < mec
2;

h	

mec2

� ��
 2

; h	 > mec
2:

8>>><
>>>:

ð7Þ

When observed from a redshift z � 1, the spectrum peaks at
h	 � 250 keV, as reported by Burst and Transient Source Ex-
periment (BATSE) observations (Preece et al. 2000). The pa-
rameter �load for such a spectrum was derived in B02,

�load 
1; 
2ð Þ ¼ 
2 � 
1ð Þ
1� 
1ð Þ 
2 � 1ð Þ


2 � 
1

2��
 2�
 1

KN

� �1=2
; ð8Þ

where �KN � 0:4 and � ¼ (7/12)2�
 2 (1þ 
2)
�5=3. In the ex-

amples below we fix 
1 ¼ 0, so that

�load 
2ð Þ ¼ 6

7

� �1=2
5
 2=2


3=2
2


2 � 1
1þ 
2ð Þ5=6: ð9Þ

A typical GRB has 
2 � 1:5, which gives �load � 24.
At sufficiently large radii, when the �-ray front has � < �load ,

its effect on the medium is negligible: the medium remains al-
most static (� � 1) and e�-free (Z � 1). When the front has � >
�load , the runaway e� loading occurs. The number of loaded
pairs depends exponentially on � as long as � < �acc. At � > �acc,
the front acts as a relativistic accelerator and the dependence of
� and Z on � can be approximated by power laws (eqs. [4] and
[5]). The slopes of �(� ) and Z(� ) change at � � 3�acc where
Z � 103 and the mass of injected e� is comparable to that of the
ambient ions. An interesting effect takes place at � > �gap �
3 ;103: then �(� ) exceeds the Lorentz factor of the ejecta �ej ¼
102 103. The radiation front with such a high � pushes the
external medium away from the fireball and opens a gap, so that
the fireball moves in a cavity cleared by its own radiation front.

The �-ray front expands with time, and its �-parameter de-
creases as R�2. It starts at very high � and then passes through
�gap, �acc, and �load at radii Rgap, Racc, and Rload , respectively,

Racc � 7 ;1015
E�

1053 ergs

� �1=2
cm;

Rload ¼ 5þ ln �eð Þ1=2Racc; Rgap �
Racc

3
: ð10Þ

The Z(R) and �(R) of the preshock medium are shown in
Figure 2 for E� ¼ 1053 ergs. They do not depend on the density
of the ambient medium as long as the medium is optically thin
and are entirely determined by the parameters of the radiation
front. The figure shows the exact Z and � (see also Figs. 1 and 3
in B02) and their analytical approximations (eqs. [4] and [5]).

Variations in GRB spectra have some effect on Z(R) and �(R)
because they affect �load. For instance, if 
2 changes from 1.5 to
2, then �load changes from 24 to 33 (eq. [9]); the resulting
changes in Z(R) and �(R) are shown in Figure 2.

2.2. Blast Wave

The prompt GRB emission can be produced quite early
inside the fireball, preceding the development of the external
blast wave at R � 1015 1017 cm. (The millisecond variability
observed in GRBs suggests small radii of �-ray emission,
R� � 1012 1014 cm.) We assume that the �-rays are emitted be-
fore the afterglow and then propagate ahead of the blast wave
through the ambient medium.

Then three characteristic radii Rgap, Racc, and Rload define
four stages of the GRB explosion:

1. R < Rgap. The fireball moves in a cavity cleared by its
radiation front. The e�-rich external medium (Z > 103) surfs
ahead with � > �ej.

Fig. 2.—Pair-loading factor Z and Lorentz factor � acquired by amedium at a
radius R when it is overtaken by a �-ray front. The front has isotropic energy
E� ¼ 1053 ergs. The exact numerical results are shown by solid lines and the
analytical approximation (eqs. [4] and [5]) by dashed lines. The characteristic
radii Rgap, Racc, and Rload are indicated by vertical dotted lines. The condition
� ¼ �ej defines Rgap; in this example �ej ¼ 200 (shown by the horizontal dotted
line). Z(R) and �(R) for different E� are found by simple rescaling R !
(E� /10

53)1
=2R. The GRB spectrum assumed in the calculation has the typical

high-energy slope 
2 ¼ 1:5. To illustrate the dependence on 
2, we also show
Z(R) and �(R) for 
2 ¼ 2 (thin solid lines).
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2. Rgap < R < Racc. The external blast wave has formed, and
the fireball sweeps up the e�-rich medium (Zk 102) that moves
with 1T� < �ej.

3. Racc < R < Rload. The fireball sweeps up the static me-
dium (� � 1) dominated by e� (Z 3 1).

4. R > Rload. The fireball sweeps up the static pair-free
medium.

The blast wave develops at R > Rgap, with its forward and re-
verse shocks. The preshock external medium is e�-rich andmov-
ing relativistically, which affects the jump conditions and the state
of the postshock plasma. At R ¼ Rgap the blast wave gently be-
gins to sweep up the preaccelerated medium with a small rela-
tive Lorentz factor�rel � 1 (�ej � �).With increasingR > Rgap,
� falls off quickly and approaches unity at R ¼ Racc as � ¼
(R /Racc)

�6. Thus, the fireball suddenly ‘‘learns’’ that there is an
interesting amount of slow material in its way and hits it with
a large �rel. This resembles a collision with a wall and results
in a sharp rise of the afterglow at R � Racc (B02).

The explosion picture is modified if the �-ray front is created
by the shock wave itself (external model of the prompt GRB)
rather than by internal dissipation in the fireball. Then a self-
consistent blast wave model exists without the gap. A suffi-
ciently dense medium can complicate that picture if it leads to
an ‘‘electromagnetic catastrophe’’ in the forward shock (Stern
2003), i.e., a runaway production of �-rays, which may result in
transient gap openings.

The uncertainties in the mechanism of the prompt GRB play
little role for the afterglow model developed below as we focus
on the stage when the process of �-ray production is over. We
consider R > Rgap, and the blast wave at these radii has practi-
cally no memory of the gap opening. We need only to know the
parameters of the emitted �-ray front (eq. [7]), which are taken
from observations. Therefore, the following calculations apply to
both internal and external models of the prompt GRB emission.

3. AFTERGLOW CALCULATION

The production of afterglows without the e�-loading effects,
i.e., with Z ¼ 1 and � ¼ 1, was studied previously in detail. The
electrons were assumed to receive a significant fraction �e � 0:1
of the shock energy (the remaining fraction 1� �e is carried by
the postshock ions). This leads to a high energy per electron, and
the early high-� blast wave emits hard X-rays in the fast-cooling
regime: the electrons immediately radiate the received energy,
practically at the same radius where they are shocked.

The e� loading changes the picture: a lot of leptons now share
the energy received from the shock. As a result, the mean en-
ergy per postshock e� is reduced by orders of magnitude and e�

emit much softer radiation. Furthermore, the postshock e� can
be in the slow-cooling regime so that their emission remains
significant at R > Rload where no new pairs are added to the
blast wave.

3.1. Formulation of the Problem

We focus on a sufficiently early stage when � > ��1, where �
is the opening angle of the explosion; then the expanding jet
behaves like a portion of a spherically symmetric explosion and
we can neglect the beaming effects. Three further technical
assumptions simplify our calculations:

1. The shocked ambient material is assumed to have a
common Lorentz factor � (relative motions in the postshock
material are subsonic and the assumption of common � is good
within a factor of 1/

ffiffiffi
3

p
).

2. The postshock material is assumed to be in pressure
equilibrium, i.e., P ¼ constant throughout this material.
3. When calculating the observed luminosity, we neglect the

finite thickness of the blast wave (equal to the distance between
the contact discontinuity and the forward shock). The blast
wave radiation is then characterized by its total instantaneous
luminosity L	 emitted at a current radius. Inclusion of time de-
lays between photons from different subshells of the blast ma-
terial would change the result by a factor of a few. A precise
calculation of this factor would require one to relax assump-
tions 1 and 2.

These assumptions allow us to derive the instantaneous lu-
minosity L	 at a given frequency 	obs. We are interested in the
soft emission here, from IR to soft X-rays, and especially op-
tical, 	obs � 0:5 ; 1015 Hz.
Consider the moment of time when the blast wave reaches a

given radius R̃. The total postshock ambient mass at this mo-
ment is7

m̃(R̃) ¼
Z R̃

0

4�R2
0(R) dR: ð11Þ

Each subshell �m of this material has its own history. It used to
be a shell of ambient medium located at a radius R < R̃, which
was loaded with e� pairs and preaccelerated by the prompt
�-rays, then immediately shocked and picked up by the rela-
tivistic blast wave. The radius where all that happened is related
to m by equation

m ¼
Z R(m)

0

4�R2
0(R) dR: ð12Þ

Then �m cooled radiatively and adiabatically as the blast wave
expanded to the present radius R̃.
We need to evaluate the contribution of each �m to the current

luminosity L	(R̃) and therefore have to resolve the blast wave
material in its (Lagrangian) mass coordinate 0 < m < m̃, even
though we do not resolve it in radius and assume that all �m are
located at the same R̃. Herem ! 0 is thematerial that was swept
up first (at small radii), and m ! m̃ is the currently shocked
material. L	 is the sum of current emissions �L	 from all �m.
In afterglow models without e� loading the emission from

mTm̃ is negligible, and the instantaneous luminosity is dom-
inated by the recently shocked mass shell mP m̃. A special
feature of pair-loaded blast waves is that their L	 peaks at
mTm̃. Therefore, an accurate integration over m is needed.
To calculate �L	 from each �m, we need to know the current

e� spectrum f̃ (�e) and magnetic field B̃ in �m.

3.2. Magnetic Field

The magnetic field in shell �m in the blast wave of radius R̃
is given in terms of the customary equipartition parameter
�̃B(m) < 1,

ŨB(m) ¼
B̃2(m)

8�
¼ �̃B(m)Ũ ; ð13Þ

where Ũ ¼ 3P̃ is the current energy density in the blast wave
and P̃ is its pressure. The variables P̃ and Ũ are assumed to be

7 Hereafter quantities taken at the current radius R̃ are marked by a tilde to
distinguish them from the corresponding quantities at radius R(m) where shell
(m; mþ �m) was shocked.
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constant throughout the postshock material in our simplified
model. They are functions of R̃ only and related to the ambient
density by the jump condition at the shock front,

Ũ ¼ 3P̃ ¼ 4
̃0c
2�̃rel�̃; ð14Þ

where

�̃rel ¼
�̃

�̃ 1þ �̃
� � ð15Þ

(when �̃T�̃) is the current Lorentz factor of the preshock
medium relative to the blast wave, and �̃ ¼ (1� �̃ 2)�1=2 is the
Lorentz factor of the preshock medium in the laboratory frame.
The jump condition given by equation (14) takes into account
the compression of the ambient medium preaccelerated to a
Lorentz factor �̃ (Madau & Thompson 2000; B02). Thus, the
magnetic field can be written as

B̃ ¼ �̃
32��̃B
̃0c

2

�̃ 1þ �̃
� �

" #1=2
¼ 0:39�̃

�̃Bñ0�e

�̃ 1þ �̃
� �

" #1=2
G; ð16Þ

where ñ0 is expressed in cm�3.
The parameter �̃B(m) can change with R̃: the magnetic field

evolves as �m expands from the radius R where it was shocked
to the current radius R̃. The toroidal field component is domi-
nant in the expanding shocked plasma and, if the magnetic flux
is conserved, B̃ evolves as

B̃(m)

B(m)
¼ 
̃




R̃

R
¼ P̃

P

� �3=4
R̃

R
; ð17Þ

where 
 is the proper mass density of baryons and we have used
the adiabatic equation of state P / 
4=3. Using equation (14),
we can rewrite the flux conservation condition as

B̃(m)

B(m)
¼ �̃�̃rel
̃0

��rel
0

� �3=4
R̃

R
;

�̃B
�B

¼ �̃�̃rel
̃0
��rel
0

� �1=2
R̃

R

� �2
: ð18Þ

It shows that �̃B grows downstream of the shock. This growth,
however, cannot proceed beyond equipartition: �̃B then satu-
rates near unity.

If the flux is not conserved (the magnetic field may reconnect/
dissipate in the blast), the evolution of postshock B̃ is different.
Therefore, we do not specify �̃B in the calculations until the last
step when we give examples. Then, besides equation (18) we
also consider the case of �̃B ¼ �B ¼ const, which is a second
reasonable prescription for the magnetic field evolution.

3.3. Distribution Function of Electrons/Positrons

The customary phenomenological shock model of GRBs
assumes that the electrons (and positrons) are impulsively ac-
celerated at the shock front with a power-law spectrum,

f �eð Þ ¼
0; �e < �m;

K
�e
�m

� ��p

; �e > �m:

8<
: ð19Þ

This initial spectrum is injected in �m at the radius R(m) where
�m is shocked; the Lorentz factor �e of the accelerated leptons is

measured in the fluid frame. The total injected energy of non-
thermal e� in this frame is

�E ¼
Z
�emec

2f �eð Þ d�e ¼ �e�rel �mc2; ð20Þ

and the total number of nonthermal leptons in �m is

�N ¼
Z

f (�e) d�e ¼
�m

�emp

� �
Z: ð21Þ

Here p > 2 and �e < 1 are phenomenological parameters of
the electron acceleration.

From equations (20) and (21) one finds �m and K,

�m ¼ �rel

Z=�eð Þ
�e p� 2ð Þmp

p� 1ð Þme

; ð22Þ

K ¼ ( p� 1)
�N

�m
: ð23Þ

When a shocked �m expands from R to R̃, the injected non-
thermal spectrum is modified by two effects:

1. Adiabatic cooling shifts the whole e� distribution as �e /
P1=4, retaining the power-law shape. The minimum Lorentz fac-
tor of the nonthermal spectrum, �m, changes by the factor

A ¼ P̃

P

� �1=4
¼ 
̃0�̃rel�̃


0�rel�

� �1=4
; ð24Þ

�̃m m; R̃
� �

¼ A�m m; Rð Þ; ð25Þ

and the normalization K of the spectrum changes as K̃ ¼ K /A.
2. Radiative cooling cuts off the e� distribution at high �e. In

most of the models considered below, the exact position of the
cutoff is not important because we focus on the low-frequency
radiation. The cutoff can be estimated as follows.

The radiative cooling of �m can peak at any radius R0 between
R and R̃, and then the cutoff is shaped at this radius. Electrons
with Lorentz factor �e are cooled with a rate (assuming isotropic
pitch-angle distribution)

�̇e ¼ � 4

3

�T
mec

B02

8�
þ U 0

s

� �
� 2
e ; ð26Þ

where B0 ¼ B(m; R0) andU 0
s ¼ Us(m; R

0) is the energy density
of soft (synchrotron) radiation in �m at radius R0. We assume
that the bulk of synchrotron radiation in the fluid frame satisfies
h	Cuid < mec

2/�e and scatters off e� with Thomson cross sec-
tion. Using equations (13) and (14), we get

�̇e ¼ � 16

3


00
me

�Tc�
0
B�

0
rel�

0 1þ C 0ð Þ� 2
e : ð27Þ

Here C 0 ¼ U 0
s /U

0
B is the relative contribution of inverse Compton

scattering to the cooling rate.
The characteristic cooling Lorentz factor � 0c at R

0 is defined
by the condition that the cooling timescale �e/ j�̇ej equals the
expansion timescale (R0 � R)/�0c. This yields

� 0
c mð Þ ¼ 3me

16� 0B�
0
rel�T 1þ C 0ð Þ R0 � Rð Þ
00

: ð28Þ
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Note that C 0 depends on the radiated energy U 0
s , which in turn

depends on � 0
c; therefore, equation (28) is implicit. It can be

solved as follows. The total radiation density in �m is compa-
rable to the lost e� energy: U 0

rad � (� 0
c /�

0
m)

2�p�eU
0 if � 0

c > � 0
m

and U 0
rad � �eU

0 otherwise. Its synchrotron fraction isU 0
s /U

0
rad ¼

U 0
B /(U

0
s þ U 0

B). This allows one to express C
0 ¼ U 0

s /U
0
B in terms

of � 0
c ,

C 0 C 0 þ 1ð Þ ¼ �e
�0B

1; � 0
c < � 0m;

� 0
c

� 0
m

� �2�p

; � 0
c > � 0m:

8><
>: ð29Þ

Now we have two equations (28) and (29), which can be
solved for C 0 and � 0

c.
This estimate assumes that U 0

s (m) is produced locally at a
given m and neglects the transport of synchrotron radiation
across the blast wave. Inclusion of transport further complicates
the calculation of C 0(m) and � 0

c(m). In this paper we avoid
models with significant Compton cooling and use the simple
estimate of � 0

c (eq. [28]) with C 0 ¼ 0. The consistency of this
estimate requires C 0(� 0

c)P 1, which can be checked using
equation (29). An estimate of Compton cooling that includes
the radiation transport will be given in x 6.3.

The e� distribution cutoff �̃c in �m at the current radius R̃ is

�̃c ¼ � 0
c A

0; A0 ¼ 
̃0�̃rel�̃


00�
0
rel�

0

� �1=4
: ð30Þ

It is shaped at the radius R 0 where (� 0
c A

0) is minimum with � 0
c

calculated as described above, and its evolution from R0 to R̃ is
determined by the adiabatic cooling factor A0.

If �̃m < �̃c (slow-cooling regime), the current nonthermal e�

distribution in �m is a power lawwith slope p and normalization
K̃, extending from �̃m to �̃c. If �̃c < �̃m (fast-cooling regime), all
nonthermal leptons �N pile up near a single Lorentz factor
�e � �̃c. In any case, the number of nonthermal e� in �m is
given by equation (21), so their distribution function at R̃ can be
written as

f̃ �eð Þ ¼ �N

p� 1ð Þ
�̃m

�e
�̃m

� ��p

H �e � �̃mð ÞH �̃c � �eð Þ; �̃m < �̃c;

� �e � �̃cð Þ; �̃m > �̃c;

8<
:

ð31Þ

where H(: : :) is the Heaviside step function and �(: : :) is the
Dirac �-function.

3.4. Self-Absorption

Self-absorption can affect synchrotron emission from e�with
low �e. The low-�e population is created at the very beginning
of pair loading (R < Racc) when the preacceleration � is sig-
nificant, the forward shock is relatively mild (�relT�), and
the pair-loading factor Z is comparable to 103 (see eq. [22]). The
low-energy postshock e� are slowly cooling and produce low-
frequency radiation that is self-absorbed.

Self-absorption is, however, not important for blast wave
radiation with frequencies 	k 1012 Hz that we consider there-
after. This radiation is dominated by the blast wave material
with sufficiently high �m so that self-absorption can be ne-
glected for all �e � �m. The condition of small self-absorption
can be written as Um < �mmec

2(	/c)3, where Um is the density

of synchrotron radiation produced by e� with �e ¼ �m, and we
assume thereafter

Um � � 2
mUB�T

R

�
< �mmec

2 	

c

� 	3
: ð32Þ

This roughly corresponds to 	 > 1012 Hz.

3.5. Synchrotron Luminosity

Given the current magnetic field B̃ and nonthermal e�

spectrum f̃ (�e) in �m, it is straightforward to evaluate its con-
tribution �L	 to the instantaneous luminosity of the blast wave.
The synchrotron spectrum of e�with Lorentz factors �e in the

fluid frame peaks at the frequency (assuming isotropic pitch-
angle distribution)

	Cuid � 0:15
eB̃

mec
� 2
e : ð33Þ

The intensity-weighted Doppler shift to the laboratory frame is
given by

	 ¼ 4

3
�̃	Cuid; ð34Þ

and the corresponding observed frequency is

	obs ¼
	

1þ z
; ð35Þ

where z is the cosmological redshift of the burst. From equation
(33) we find �e of e

� whose synchrotron spectrum peaks at a
given 	. We denote this characteristic Lorentz factor by �̃	,

�̃	 � �	 m; R̃
� �

� 5	mec

�̃eB̃

� �1=2
: ð36Þ

The emitted synchrotron power by the �̃	 electron is Ės ¼
�TcB̃

2�̃ 2
	 /6�, and the synchrotron luminosity from an e� pop-

ulation with distribution dN/d�e is approximately given by

	L	 ¼
dL

d log 	
¼ dL

2d log�̃	
¼ 1

2
�e

dN

d�e

� �
�e¼�̃	

Ės �	ð Þ: ð37Þ

The e� population in �m peaks near �̃m if �̃c > �̃m (slow-cooling
regime) and near �̃c if �̃c < �̃m (fast-cooling regime). In the first
case, the synchrotron luminosity of �m can be written as

� 	L	ð Þ ¼ � 	CuidL	Cuidð Þ ¼ �Lmax

�̃	
�̃m

� �2=3
; �̃	 < �̃m < �̃c;

�̃	
�̃m

� �1�p

; �̃m < �̃	 < �̃c;

0; �̃m < �̃c < �̃	;

8>>>>><
>>>>>:

ð38Þ

where

�Lmax � �TcB̃
2

12�
�̃ 2
	 �N ¼ 5

12�

mec
2�T
e

B̃

�̃
	 �N : ð39Þ

Note that �(	L	) is originally defined as energy emitted per
unit time in the fixed laboratory frame; however, we calculate
it in the fluid frame using the Lorentz invariancy of 	L	. The
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parameter �Lmax is a maximum luminosity that would be emitted
at 	 at themost favorable condition �̃m ¼ �̃	 . [In this case 2�(	L	)
equals the energy-loss rate of the dominant e� population with
�e � �m.] Similarly, in the fast-cooling regime, we have

� 	L	ð Þ ¼ �Lmax
�̃	
�̃c

� �2=3
; �̃	 < �̃c < �̃m;

0; �̃	 > �̃c:

8><
>: ð40Þ

The nonthermal e� with Lorentz factors �e ¼ �̃m and �e ¼ �̃c
emit radiation at frequencies

	̃m ¼ 0:2�̃
eB̃

mec
�̃ 2
m; 	̃c ¼ 0:2�̃

eB̃

mec
�̃ 2
c ; ð41Þ

and the spectral luminosity �L	 /�m at a Lagrangian coordinate
m can be written as

�L	
�m

¼ �Lmax
	

�m

	

	̃m

� �1=3
; 	 < 	̃m < 	̃c;

	

	̃m

� �1�pð Þ=2
; 	̃m < 	 < 	̃c;

	

	̃c

� �1=3
; 	 < 	̃c < 	̃m;

0; 	 > 	̃c:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð42Þ

An explicit formula for �Lmax
	 ¼ �Lmax/	 is found using equa-

tion (21) for �N and equation (16) for B̃,

�Lmax
	

�m
¼ 5

12�

mec
2�T
e

B̃

�̃

�N

�m
� c2 32�

me

�emp

�̃Bñ0r
3
e

�̃ 1þ �̃
� �

" #1=2
Z

� 30
�̃Bñ0

�e�̃ 1þ �̃
� �

" #1=2
Z; ð43Þ

where re ¼ e2/mec
2 � 2:81 ;10�13 cm is the classical electron

radius. Note that �Lmax
	 /�m does not depend on 	.

The total instantaneous luminosity of the blast wave is found
by integrating over m,

L	 R̃
� �

¼
Z m̃

0

�L	
�m

�m: ð44Þ

3.6. Observed Flux

An observer at a distance D much smaller than the Hubble
scale would measure the spectral luminosity (e.g. Rybicki &
Lightman 1979),

Lobs	 R̃
� �

¼ 4

3
�̃2L	; ð45Þ

and the spectral flux F	 ¼ Lobs	 /4�D2. For cosmologically large
D, the flux formula is modified by two effects: D is replaced by
the luminosity distance and the observed frequency of radiation
is redshifted, 	obs ¼ (1þ z)�1	,

F	 ¼
	Lobs	

4�	obsD2
¼ �̃2(1þ z)

3�D2
L	; ð46Þ

where

D ¼ 2c

H0

1þ z�
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p� �
� 2:6 ;1028 1þ z�

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p� �
cm;

ð47Þ

and H0 � 70 km s�1 Mpc�1 is the Hubble constant. The for-
mula for D assumes a simple model of matter-dominated flat
universe and may be easily modified to include the cosmolog-
ical constant. The observed optical magnitude in Vor R band is
related to F	 by

mV ¼ 8:873� 2:5 log F	; mR ¼ 8:645� 2:5 log F	; ð48Þ

where F	 is in units of Jy ¼ 10�23 ergs cm�2.
The flux F	(R̃) is received at the observer time

tobs R̃
� �

� R̃

2�̃2c
1þ zð Þ ð49Þ

after the arrival of first photons (prompt �-rays) from the ex-
plosion. More exactly, it is received during a time interval
�tobs � (R̃ /2�̃2c)(1þ z) because of the spherical curvature and
finite thickness of the blast wave, and equation (49) gives only
an approximate arrival time. The numerical factor in this equa-
tion can vary around 1

2
by a factor of�2, depending on the blast

wave dynamics �̃(R̃). We hereafter use the approximate equa-
tion (49) with the fixed factor 1

2
. This degree of accuracy is con-

sistent with our approximate treatment of the blast wave as a
constant-pressure shell.

4. NUMERICAL EXAMPLES

It is straightforward to calculate the afterglow emission
F	 (tobs) using the formulae of x 3 and taking the integral given
by equation (44) numerically. A simple illustrative afterglow
model has the following parameters:

1. Isotropic energy Eej ¼ 1053 ergs and initial Lorentz factor
�0 ¼ 200 (the reverse shock is assumed to be nonrelativistic
and �0 � �ej).

2. External density n0(R) ¼ const and �e ¼ 1 (uniform hy-
drogenmedium).We consider n0 ¼ 0:1; 1,10,102, and 103 cm�3.

3. Parameters of the postshock leptons: �e ¼ 0:1 and
p ¼ 2:5. Most of the blast wave energy is carried by relativis-
tically hot ions that do not exchange energy with the electrons
and the blast wave is approximately adiabatic.

4. Magnetic equipartition parameter �B immediately behind
the shock. It is taken equal to 10�6, 10�4, or 10�2 in the example
models. The parameter �B(m; R̃) can evolve in the postshock
material of the blast wave as it expands and decelerates. We
consider two cases: magnetic flux is conserved in the postshock
region (eq. [18]) or �B(m; R̃) ¼ �B is constant in all shells m at
all times.

5. The �-ray front is described by its isotropic energy E�. In
the examples below we assume E� ¼ Eej ¼ 1053 ergs, i.e., half
of the total explosion energy is initially emitted in the prompt
GRB. We also assume the standard GRB spectrum with a high-
energy slope 
2 ¼ 1:5, which gives �acc ¼ 120 (x 2).

The blast wave has a constant � � �0 until it approaches
the characteristic deceleration radius Rdec where the swept-up
mass m satisfies �2

0mc
2 ¼ Eej. At larger radii �(R) quickly ap-

proaches the self-similar solution of Blandford&McKee (1976):
� ¼ (17/12)1

=2�0(R /Rdec)
�3=2. We use a simple approximation:

�(R) ¼ �0 at R � Rdec and �(R) ¼ �0(R /Rdec)
�3=2 at R � Rdec.
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It has sufficient accuracy, adequate to our simplified hydrody-
namical model (x 3).

The results of numerical calculations are shown in Figures 3–
7. In all examples, a cosmological redshift z ¼ 1 is assumed.

Figure 3 shows the optical light curve F	(tobs) found at
n0 ¼ 10 cm�3 and �B ¼ 10�4. It has two peaks. The first peak is
a result of e� loading (for comparison we show the results with
Z ¼ 1 and � ¼ 1, i.e., with neglected impact of the �-ray front
on the external medium). The figure compares the results ob-
tained with magnetic flux conservation and �B(m; R̃) ¼ const.
The e� emission is stronger if the magnetic flux is conserved
because it implies a higher �̃B; then the peak of e� radiation is
reached at R̃ ¼ Rdec (see x 5).

The second peak is produced by the pair-free part of the blast.
It is well described by the standard afterglow model and cor-
responds to 	m ¼ 	 (see x 5.1). The time of the second peak
t peak / (�Bn0)1

=3�4=3e 	�2=3
15 .

Figure 4 shows the corresponding light curves in the infrared
and X-ray bands. The relative contribution of e� to the after-
glow is higher at lower frequencies, and their effect is negligible
in the hard X-ray band. Comparing the light curves in IR, op-
tical, and soft X-rays, one can see that the spectral flux of the e�

peak is comparable in all three cases, indicating a small spectral
index of e� radiation.

Figure 5 shows the instantaneous broadband spectrum emitted
by the blast wave at the deceleration radius Rdec (which is 4.6
larger than Racc in the example model). The small e�-dominated
fraction of the swept-up mass dominates the emission in soft
bands. Its spectral slope is small: j
 jP 0:2. At high frequencies,
	obs > 1017 Hz, the spectrum is dominated by the pair-free
material behind the current position of the shock and well de-
scribed by the usual pair-free model. In particular, the standard
breaks at 	m � 1018 Hz (	1=3 ! 	�( p�1)=2) and 	c � 1020 Hz
(	�( p�1)=2 ! 	�p=2) are seen. (In the top panel, the second
[cooling] break occurs at a smaller frequency �1019 Hz and is
smooth because 	c happens to be close to 	m.) The spectrum of
the e� emission component has a break at 	 � 	m(mload; R̃),
which is 1017 Hz, and cuts off at 	 > 	c(mload; R̃). The cutoff
frequency is smaller in the top panel because the flux con-
servation gives a stronger magnetic field (see also Fig. 8
below).

Figure 6 shows the optical light curves for different n0 and
fixed �B ¼ 10�4. It also illustrates the effect of magnetic flux

conservation by comparing it with the results obtained at
�B(m; R̃) ¼ const. The e� emission component quickly increases
with increasing n0. It scales as n

3=2
0 as we show in x 5, and this

scaling is observed in Figure 6 for constant-�B models.
Figure 7 shows how the optical light curve depends on the

shock parameter �B. At �B ¼ 10�2 the e� are in the fast-cooling
regime (	c < 	m), and most of the pair energy is emitted at
earlier times. This produces a bump in the light curve before or

Fig. 3.—Example of the optical light curve in the R band, 	obs ¼ 5:45 ;
1014 Hz, for a ‘‘canonical’’ GRB explosion: adiabatic blast wave with Eej ¼
E� ¼ 1053 ergs, �0 ¼ 200, z ¼ 1, n0 ¼ 10 cm3, �B ¼ 10�4, �e ¼ 0:1, p ¼ 2:5.
Left axis indicates the observed flux in mJy, and right axis the corresponding
R magnitude. Calculations shown by solid lines assume conservation of the
postshock magnetic flux. Dashed lines show the results with �B(m; R) ¼
const ¼ �B assumption. Thin light curves would be obtained if the pairs were
neglected (Z ¼ 1 and � ¼ 1). [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 4.—Light curves at 	obs ¼ 1013 (top) and 1017 Hz (bottom) for the same
model as in Fig. 3. The meaning of line types is the same as in Fig. 3. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 5.—Instantaneous spectrum emitted by the blast wave at R ¼ Rdec (solid
line; the model parameters are the same as in Fig. 3). The dashed line shows the
contribution of the e�-loaded shell m < mload. The dotted line shows the
spectrum that would be found in the absence of �-ray front (Z ¼ 1 and � ¼ 1);
it is approximately equal to the spectrum of pair-free material m > mload. Top:
Conservation of postshock magnetic flux is assumed. Bottom: �B(m; R̃) ¼
const ¼ �B is assumed.
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at the deceleration radius, depending on the behavior of mag-
netic field downstream of the shock.

5. ANALYTICAL CALCULATION

In x 5.1 we derive the luminosity of a relativistic blast wave
without a �-ray precursor, when the e�-loading and preaccel-
eration effects are neglected (Z ¼ 1 and � ¼ 1). The pair-free
blast wave was studied in a number of previous works (e.g., Sari
et al. 1998; Granot et al. 1999; Panaitescu & Kumar 2000) and
used extensively to fit observed afterglows. We show that the
previous results can be obtained with a different technique
where the produced luminosity is calculated as an integral over
the Lagrangian mass coordinate m (eq. [44]). This approach is
extended to e�-loaded blast waves in x 5.2.

Where the ambient density profile needs to be specified, we
assume a power law, so that the swept-up mass is

m(R) ¼ macc

R

Racc

� �k
: ð50Þ

The value k ¼ 3 describes a uniform medium n0(R) ¼ const
and k ¼ 1 describes a wind-type medium n0 / R�2. The deri-
vation in xx 5.1 and 5.2 applies to both cases. In x 6 we consider
in more detail the case k ¼ 3.

5.1. Pair-free Afterglow

From x 3.4 we have at Z ¼ 1 and � ¼ 1

L0	 ¼
Z m̃

0

30
�̃Bñ0
�e

� �1=2
	

	̃m

� �1=3
	 < 	̃m < 	̃c

	

	̃m

� �1�pð Þ=2
	̃m < 	 < 	̃c

	

	̃c

� �1=3
	 < 	̃c < 	̃m

0 	 > 	̃c

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

dm:

ð51Þ

The superscript zero in L0	 marks the neglect of e� loading. Three
quantities in the integrand depend on the Lagrangian coordi-
nate m: �̃B, �̃m, and �̃c. The quantities �̃B(m) and 	̃m(m) can vary
significantly in the region mTm̃; however, this region makes
a negligible contribution to the integral. Therefore, one can ap-
proximate �̃B and 	̃m as constants: �̃B(m) � �̃B(m̃) and 	̃m(m) �
	̃m(m̃). Only 	̃c(m) cannot be assumed constant: 	̃c(m) ! 1 at
m ! m̃.

A characteristic 	̃c can be defined at m ¼ m̃ /2: it will repre-
sent the cooling cutoff in the main part of the postshock mate-
rial. The value of �̃c(m̃ /2) is shaped as the blast wave expands
from R ¼ 2�1=k R̃ (the shock radius of m̃ /2) to the current radius
R̃. It is given by (see x 3.3)

�̃c
m̃

2

� �
¼ ame

�Tmp�en0�B�̃R̃
; ð52Þ

where a � (3/16)(1� 2�1=k)�1 is a numerical factor. We as-
sume here a small Compton factor C < 1 for simplicity.

Let us define �	 � �̃	(m̃ /2) � �̃	(m̃), �m � �̃m(m̃ /2) �
�̃m(m̃), and �c � �̃c(m̃ /2); they are given by equations (36),
(25), and (52), respectively. The numerical values of these
Lorentz factors and the corresponding synchrotron frequencies
are8

�	 ¼ 2:7 ; 102	
1=2
15 ��1

2 �Bn0�eð Þ�1=4; ð53Þ
�c ¼ 8:2 ; 102aR�1

16 �
�1
2 �Bn0�eð Þ�1;

	c ¼ 9:2 ;1015a2 �Bn0�eð Þ�3=2
R�2
16 Hz; ð54Þ

�m ¼ 1:84 ;105�2 �e;

	m ¼ 4:6 ;1020�4
2 �Bn0ð Þ1=2 2�5=2e Hz; ð55Þ

where

 � �e( p� 2)

( p� 1)
: ð56Þ

8 Hereafter in x 5.1 we drop the tilde for R̃, �̃B, and �̃ because there is no need
to consider mTm̃ for the pair-free afterglow and distinguish between the
postshock and current quantities.

Fig. 7.—Optical light curves found for �B ¼ 10�6, 10�4, and 10�2. All
other parameters are the same as in Fig. 3. Calculations shown by solid lines
assume conservation of the postshock magnetic flux. Dotted lines show the
results with �B(m; R) ¼ const ¼ �B.

Fig. 6.—Optical light curves found for external densities n0 ¼ 0:1, 1, 10,
102, and 103 cm�3. All other parameters are the same as in Fig. 3. Calculations
shown by solid lines assume conservation of the postshock magnetic flux.
Dotted lines show the results with �B(m; R) ¼ const ¼ �B.
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There are two possible cases:

1. 	c > 	. Most of the blast material contributes to the ob-
served luminosity at the frequency 	. The luminosity integral
over m is then estimated as 	L	 � m̃(�L /�m), where �L/�m is
taken at m ¼ m̃ /2 and given by equation (51) with 	̃c and 	̃m
replaced by 	c and 	m.

2. 	c < 	. Most of the blast material does not emit any
synchrotron radiation at 	 because its spectrum is cut off at a
lower frequency 	c. Only a mass fraction (m̃� mc)Tm̃ just
behind the shock front contributes to L	, where mc is defined by
	̃c(mc) ¼ 	. The condition 	̃c > 	 is satisfied in the mass in-
terval mc < m < m̃ and the luminosity integral over m can be
estimated as 	L	 � (m̃� mc)(�L /�m).

The cooling Lorentz factor �̃c(m) increases toward the shock
front m̃ as �̃c(m) / (R̃� R)�1 / (m̃1=k � m1=k)�1, and we have

�̃c m̃=2ð Þ
�̃c mð Þ ¼ 1� m=m̃ð Þ1=k

1� 1=2ð Þ1=k
¼ b 1� m

m̃

� 	
; ð57Þ

where so-defined b(m) is a slowly varying function: b ¼ 2 at
m ¼ m̃ /2 and b ¼ ½k(1� 0:51=k )	�1

at m ! m̃. Equating �̃c(m)
and �	, we find mc,

m̃� mc

m̃
¼ �c

b�	
¼ 1

b

	c
	

� 	1=2
; ð58Þ

with b ¼ 2 at 	c ¼ 	 and b ¼ ½k(1� 0:51=k)	�1
at 	cT	. One

can take b � 2 in all cases.
The results can be summarized as follows:

L0	 � 30
�Bn0
�e

� �1=2
m̃g	; ð59Þ

g	 ¼
1

1þ b 	=	cð Þ1=2

	

	m

� �1=3
; 	 < 	m < 	c;

	

	c

� �1=3
; 	 < 	c < 	m;

	

	m

� �1�pð Þ=2
; 	m < 	 < 	c;

1; 	c < 	 < 	m;

	

	m

� �1�pð Þ=2
; 	m < 	c < 	;

	

	m

� �1�pð Þ=2
; 	c < 	m < 	:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð60Þ

It agrees with the usual afterglow description (e.g., Sari et al. 1998).
After the deceleration radius, we have for an adiabatic blast

wave �2mc2 ¼ Eej and then

F	 Rð Þ ¼ Eej 1þ zð Þ
2�D2c2

�Lmax
	

�m
g	

� 0:3 1þ zð Þ Eej

1053 ergs

� �
D

1028 cm

� ��2 �Bn0
�e

� �1=2
g	 Jy:

ð61Þ

One can see from this equation that the observed flux at a fixed
	 scales as n1

=2
0 g	 . It can be found as a function of observer

time tobs using the approximate relation tobs � (R /2�2c)(1þ z)
and the deceleration law for an adiabatic blast wave, �2 ¼
Eej /mc

2, which gives

tobs �
Rmc

2Eej

(1þ z): ð62Þ

5.2. Pair-loaded Afterglow

We now calculate the instantaneous luminosity of the blast
wave L	(R̃) taking into account e

� loading. The pairs dominate
the material with Lagrangian coordinate m < mload. The lumi-
nosity from this material can be written as

L�
	 R̃
� �

¼
Z m1

0

�L	
�m

�m; m1 ¼ minfmload; m̃g: ð63Þ

At radii R̃ < Rload (m̃ < mload) the whole blast is e
� dominated

and its total luminosity L	 ¼ L�
	 . At radii R̃ > Rload (m̃ > mload)

the total luminosity is a sum of two parts: L�
	 from small

m < mload and luminosity L0	 from the e�-free material mload <
m < m̃. The latter peaks near m̃ (x 5.1).
The total luminosity can be written as the sum

L	 ¼ L�
	 þ L0	: ð64Þ

At small radii R̃ < Rload we have just one integral L	 ¼ L�
	 ;

however, L0	 may be formally kept in equation (64) and in-
terpreted as a luminosity that would be obtained at Z ¼ � ¼ 1.
It would not change L	 because L0	TL�

	 at R̃ < Rload in the
soft bands of interest.

5.2.1. Calculation of L�
	

Pair-loaded blast waves have a special feature: the peak
synchrotron frequency 	m(m; R̃) varies enormously with the
Lagrangian coordinatem atm < mload (see an example in Fig. 8).
The peak frequency is given by

	̃m mð Þ � 	m m; R̃
� �

¼ 0:2�̃
eB̃

mec
�̃ 2
m

¼ 4:6 ; 1012
�̃3�ñ0�̃

1=2
B  2�5=2e

�̃ 1þ �̃
� �

� 1þ �ð Þ½ 	3=2Z 2n
1=2
0

Hz; ð65Þ

where we have taken into account the adiabatic cooling factor A
(x 3.2) and assumed a slow radiative cooling of e�. The factor
��3/2Z�2 appearing in this expression is a very steep function of
m, R(m), or �(R), whichever is chosen as a Lagrangian coor-
dinate in the blast wave. It varies by 5 orders of magnitude when
� varies from �acc/2 to 2�acc, which corresponds to a narrow
range of R from Racc /

ffiffiffi
2

p
to

ffiffiffi
2

p
Racc.

The steep variation of 	̃m with m implies that a narrow
mass shell�m � macc dominates L�

	 in a broad range of 	. This
fact enables a simple estimate of L�

	 . To a first approximation,
the number of e� whose emission peaks at a given 	 does not
depend on 	 and equals the number of particles in the shell
�m � macc,

N� � Zacc
macc

�emp

¼ 74
macc

mp

: ð66Þ
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The produced luminosity dL� /d log 	 approximately equals
ĖN� /2, which gives the spectral luminosity

L�
	 R̃
� �

¼ 5

12�

mec
2�T
e

B̃acc

�̃
N�

¼ 30
�̃Bacc ñ0
�e

� �1=2
Zaccmacc f	; R̃ > Racc: ð67Þ

Here B̃acc is the current magnetic field in the shell�m and �̃Bacc
is the corresponding magnetic parameter (B̃2

acc/8� divided by
the current energy density of the blast wave). In the first ap-
proximation, f	 ¼ 1, i.e., L�

	 does not depend on 	 and the
spectral index of emission 
 � 0.

Calculation of L�
	 by accurate integration over m gives the

correction factor f	 and confirms that f	 � 1 in a broad range of
frequencies. The correction factor is derived analytically in the
Appendix and shown in Figure 9. It is conveniently expressed

Fig. 8.—Instantaneous blast wave emission as a function of Lagrangian coordinate m at radius R̃ ¼ Rdec. The blast wave model is the same as in Fig. 3. The results
that would be obtained without the �-ray front effect (Z ¼ 1 and � ¼ 1) are shown by dashed lines. Top: Observed synchrotron peak frequency 	m(m; Rdec) and cutoff
frequency 	c(m; Rdec) corrected for cosmological redshift (i.e., divided by 1þ z). The horizontal dotted line indicates the R-band frequency 	obs ¼ 5:45 ; 1014 Hz.
Bottom: Distribution of the produced optical flux over m. The emission from the e�-loaded mass m < mload sharply peaks near macc, at a specific m� where
	̃m /(1þ z) ¼ 	obs. The pair-free emission component peaks at the current position of the shock m ¼ m̃ ¼ mdec. Left: Conservation of postshock magnetic flux is as-
sumed. Right: �B(m; R̃) ¼ const ¼ �B is assumed. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 9.—Correction factor f	 (with �̃B� ¼ �̃Bacc; see the Appendix). The solid
line shows the case of k ¼ 3 (uniformmedium), and the dashed line k ¼ 1 (wind-
type medium). The characteristic frequency 	̃acc is given by equation (68).
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as a function of 	 /	̃acc, where 	̃acc � 	acc(R̃) � 	m(macc; R̃)
(thus, 	̃acc describes the peak of synchrotron emission from
material shocked at R ¼ Racc after it expanded to the current R̃),

	̃acc ¼ 4 ; 1014�̃2
2

�̃

� Raccð Þ

� �
ñ0

n0 Raccð Þ

� �1=2

;
ñ0�̃Bacc
0:01

� �1=2  

0:1

� �2
Hz; R̃ � Racc: ð68Þ

This frequency is near the optical band.
The basic reason for the small slope 
 is the steep depen-

dence of the pair-loading process on radius (the big power 17/2
appears in the problem).

5.2.2. e� Contribution to the Observed Luminosity

The total observed flux of the blast wave radiation is (see
eqs. [46] and [64])

F	 ¼ F�
	 þ F 0

	 ¼ 1þ zð Þ�̃2

3�D2
L�
	 þ L0	

� �
; ð69Þ

where the pair-dominated part is given by equation (67) and the
pair-free part by equation (59). This analytical result is com-
pared with the numerical calculations in Figure 10. The ana-
lytical calculation of F�

	 is more accurate because the integral
peaks in a narrow and well-defined region of m. The standard
pair-free part is still reasonably well approximated and we can
compare the two components analytically.

Using equations (59) and (67), we get

F�
	

F 0
	

R̃
� �

¼ 74�e
macc

m̃

f	

g	

�̃Bacc
�B

� �1=2
; R̃ � Racc: ð70Þ

F 0
	 peaks in the X-ray band during the early afterglow, and
g	T1 in IR, optical, and UV bands. By contrast, F�

	 has the
spectral factor f	 � 1 in a broad range of soft frequencies from
IR to soft X-rays (x 5.2.2).

The e�-loaded material dominates the observed flux in the
soft bands for two reasons: (1) the number of emitting particles
is increased by the factor Z � Zacc ¼ 74�e and (2) their syn-
chrotron peak frequency is shifted to soft bands (because the
mean energy per postshock particle is reduced). In addition,
�̃Bacc > �B if the postshock magnetic flux is conserved in the
blast wave (see x 3.2). As a result, F�

	 3F 0
	 even when the

blast wave expands to R̃ > Rload where the e�-loaded fraction
of the blast material is very small, mloadTm̃.

6. BLAST WAVE IN A UNIFORM MEDIUM

We now consider in detail the case of a uniform hydrogen
medium, n0(R) ¼ const (k ¼ 3) with �e ¼ 1 and aim to find the
observed flux F	 ¼ F�

	 þ F 0
	 as a function of tobs and 	obs. We

assume Rload < Rdec, where

Rdec ¼
3Eej

4��2
0 n0mpc2

 !1=3

¼ 1:17 ;1017
Eej

1053 ergs

� �1=3 �0

100

� ��2=3

n
�1=3
0 cm: ð71Þ

We also assume that the blast wave is approximately adiabatic
and its Lorentz factor is given by

�̃ ¼ �0

1; R̃ < Rdec;

R̃

Rdec

� ��3=2

; R̃ > Rdec:

8><
>: ð72Þ

The approximate relation between the observer time tobs, the
blast wave radius R̃, and its Lorentz factor �̃ reads (see x 4)

R̃ tobsð Þ � 2�̃2c
tobs

1þ z
¼

2�2
0 c

tobs

1
þ z

� 	
; tobs < tdec;

Rdec

tobs

tdec

� �1=4
; tobs > tdec;

8>><
>>: ð73Þ

where

tdec ¼ (1þ z)
Rdec

2�2
0 c

� 194(1þ z)
Eej

1053 ergs

� �1=3 �0

100

� ��8=3

n
�1=3
0 s ð74Þ

is the deceleration time. We use below the following explicit
relations at R̃ > Rdec:

R̃ tobsð Þ ¼ 3:1 ;1016
Eej

1053 ergs

� �1=4
n
�1=4
0

tobs

1þ z

� �1=4
cm; ð75Þ

�̃ tobsð Þ ¼ �0

tobs

tdec

� ��3=8

¼ 720
Eej

1053 ergs

� �1=8
n
�1=8
0

tobs

1þ z

� ��3=8

: ð76Þ

If the postshock magnetic flux is conserved in the expanding
blast wave, the evolution of �B is described by equation (18),

�B m; R̃
� �

¼ �B
�̃2

�0�rel

� �1=2
R̃

R

� �2

¼ �B � 1þ �ð Þ½ 	1=2
tobs

tdec

� �2
; tobs < tdec;

tobs

tdec

� �1=8
; tobs > tdec;

8>>><
>>>:

ð77Þ

where �B is the magnetic parameter immediately behind the
shock when the blast wave had radius R(m) and �(m) is the
preshock medium velocity at that moment.

Fig. 10.—Optical light curve calculated numerically in Fig. 3 here com-
pared with the two components F�

	 and F 0
	 calculated analytically (dashed

lines).
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6.1. Pair-free Part

The e�-free afterglow is described by equations (46) and (59),

F 0
	 ¼ �̃2 1þ zð Þ

3�D2
L0	 ¼ 10 �Bn0ð Þ1=2g	m̃�̃2 1þ zð Þ

�D2
; ð78Þ

m̃ ¼ 4�

3
R̃3n0mp: ð79Þ

We focus here on low frequencies 	 < 	c; 	m and keep only the
first two lines in the general expression for g	 (eq. [60]). Sub-
stituting equations (55) and (54) for 	m and 	c and using a � 1
(x 5.1), one gets

g	 �

	

	m

� �1=3
¼ 0:013	

1=3
15 �̃

�4=3
2 �Bn0ð Þ�1=6 �2=3; 	 < 	m <	c;

	

	c

� �1=3

¼ 0:48	
1=3
15 R̃

2=3
16 �Bn0ð Þ1=2; 	 < 	c<	m:

8>>><
>>>:

ð80Þ

Note that 	 ¼ (1þ z)	obs in all the formulae. Substitution of
R̃(tobs) and �̃(tobs) gives F

0
	 as a function of tobs.

In particular, at tobs < tdec we have �̃ ¼ �0 ¼ const and get

F 0
	

Jy
¼ 0:3

D2
28

	obs
1015 Hz

� �1=3

;

10�9 �0

100

� �20=3
n
4=3
0 �

1=3
B  �2=3 1þ zð Þ�5=3

t 3obs; 	 < 	m < 	c;

10�8 �0

100

� �28=3
n2
0 �B 1þ zð Þ�7=3

t
11=3
obs ; 	 < 	c < 	m:

8>>><
>>>:

ð81Þ

At tobs > tdec, we have for an adiabatic blast wave �̃2m̃c2 ¼
Eej ¼ const and rewrite F	 as

F	 ¼ 0:3 1þ zð Þ Eej

1053 ergs

� �
D�2

28 n0�Bð Þ1=2g	 Jy; ð82Þ

which gives

F 0
	

Jy
¼ 0:3

D2
28

	obs
1015 Hz

� �1=3

;

10�3 Eej

1053

� �5=6
n
1=2
0 �

1=3
B  �2=3 1þ zð Þ5=6t1=2obs ; 	 < 	m < 	c;

Eej

1053

� �7=6
n
5=6
0 �B 1þ zð Þ7=6t1=6obs ; 	 < 	c < 	m:

8>>><
>>>:

ð83Þ

Here tobs is in seconds and n0 is in cm�3;  is given by equa-
tion (56). The same results were derived previously (e.g., Sari
et al. 1998; Panaitescu & Kumar 2000).

6.2. Pair-dominated Part

The characteristic frequency 	̃acc(tobs) is given by

	̃acc ¼ 4 ;1014
�0

100

� �2 �Baccn0
0:01

� 	1=2  

0:1

� �2

;

1 tobs < tdec

tobs

tdec

� ��9=8

tobs > tdec

8><
>:

9>=
>; Hz: ð84Þ

We have f	 � const in a broad range of frequencies around 	̃acc
(see x 5.2.2), and therefore

L�
	 � constð Þ�̃1=2Bacc: ð85Þ

The observed flux is given by

F�
	

Jy
¼ �̃2 1þ zð Þ

2�D2
L�
	 ¼ 1:7 ; 102 1þ zð Þ R

3
acc

D2
n
3=2
0 �̃

1=2
Bacc�̃

2f	;

ð86Þ

where we have used

macc ¼
4�

3
R3
accn0mp ð87Þ

and Racc is given by equation (10). Finally, we substitute
equation (76) for �̃(tobs) and find

F�
	

Jy
¼ 1:7 ;10�2 1þ zð Þ �0

100

� �2
Racc

1016 cm

� �3
D

1028 cm

� ��2

; n
3=2
0 f	�̃

1=2
Bacc

1; tobs < tdec;

tobs

tdec

� ��3=4

; tobs > tdec:

8><
>: ð88Þ

Equation (88) shows that before tdec the observed flux evolves
as F�

	 (tobs) ¼ constð Þ f	�̃1=2Bacc, where f	 changes very slowly while
�̃1=2Bacc increases as tobs if the postshock magnetic flux is conserved
(eq. [77]) and reaches (Rdec /Racc)�

1=2
B at tobs ¼ tdec. After tdec, the

observed flux decreases as �̃1=2
Bacc�̃

2f	 with �̃1=2Bacc � const ¼
(Rdec /Racc)�

1=2
B ; then

F�
	 / �̃2f	 /

tobs

tdec

� ��3=4�(9=8)

; ð89Þ

where 
 � 0:2 is the slope of spectral function f	, and we get
the approximate decay rate F�

	 / t�0:9
obs . A faster decay of F�

	 is
possible only if the magnetic field is destroyed in the blast wave
and �Bacc decreases with R̃.

6.3. Radiative Cooling of e�

The above analytical calculation of F�
	 assumed that the

pairs are slowly cooling. We now check this assumption.

6.3.1. The Cooling Cutoff of the Pair Distribution

The radiative cooling defines the cutoff of the e� distribution
�c(m; R̃) (x 3.3) and the corresponding cutoff frequency of the
synchrotron spectrum 	c(m; R̃),

	c m; R̃
� �

¼ 0:2�̃
eB̃

mec
� 2
c m; R̃
� �

; ð90Þ

where �̃ is the current Lorentz factor of the blast wave and B̃ ¼
B(m; R̃). The radiative cooling does not affect L�

	 (R̃) if �c(m;
R̃) > �m(m; R̃) at m � macc.
Both synchrotron and inverse Compton losses can affect the

value of �c at macc. They are proportional to the magnetic en-
ergy densityUB(macc; R̃) and soft radiation densityUs(macc; R̃),
respectively.

As the blast wave expands from Racc to some R̃ < Rdec, its en-
ergy density Ũ remains approximately constant while �̃Bacc grows
as (R̃ /Racc)

2 (assuming that the magnetic flux is conserved; see
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eq. [77]), so UB(macc; R̃) � (R̃ /Racc)
2�BŨ . The expression

Us(macc; R̃) is dominated by synchrotron radiation transported
from the forward shock, which is in the fast-cooling regime. The
density of synchrotron radiation at the current position of the
shock is Us(m̃; R̃) � (�e�B)

1=2Ũ (the rest of electron energy is
taken away by inverse Compton scattering of synchrotron ra-
diation; e.g., Sari & Esin 2001). A fraction�0.2 of this radiation
is transported to the downstream region of the blast wave.9 Then
the density of soft radiation at m � macc is

Us macc; R̃
� �

� 0:2 �e�Bð Þ1=2Ũ : ð91Þ

This implies thatUs(macc; R̃) is approximately constant R̃ < Rdec.
So, we find that the relative contribution of inverse Compton

scattering to the cooling rate at m � macc is given by

C macc; R̃
� �

¼
Us macc; R̃
� �

UB macc; R̃
� � � 0:2

�e�Bð Þ1=2

�̃Bacc

¼ 0:2
Racc

R̃

� �2 �e
�B

� �1=2

; ð92Þ

where the last equality assumes conservation of magnetic flux.
Belowwe consider blast waves withC(macc; Rdec)P 1; then the
cutoff at m � macc is shaped by synchrotron losses rather than
inverse Compton scattering of the forward shock radiation.

The cooling peaks at the deceleration radius and shapes the
cutoff of the e� spectrum,

�c m; Rdecð Þ ¼ 3me

16mp�T�̃Bn0�̃ Rdec � Rð Þ

¼ 9:62 ; 10�4��1
B �0

� 1þ �ð Þ½ 	1=2
R

1016 cm

� �2
Eej

1053 ergs

� ��1

; 1� R

Rdec

� ��1

; ð93Þ

	c m; Rdecð Þ ¼ 3:25 ; 1015
�B m; Rdecð Þn0

0:01

� ��3=2

;
Rdec

1017 cm

� ��2

1� R

Rdec

� ��2

Hz

¼ 3:25 ; 1015

� 1þ �ð Þ½ 	3=4
�Bn0
0:01

� 	�3=2 m

mdec

� �

;
Rdec

1017 cm

� ��2

1� R

Rdec

� ��2

Hz; ð94Þ

where R � Racc is the radius where the pair-loaded mass m �
macc was shocked and �(1þ �) is the preacceleration factor at
this radius. The last equalities in these expressions assume
magnetic flux conservation. In particular, the factors m/mdec

and ½� (1þ �)	�3=4
appeared in the expression for 	c(m; Rdec)

because of the flux conservation; they would be absent if
�B(m; R̃) ¼ const.

When the blast wave reaches the deceleration radius, its
pressure starts to decrease, and the afterward evolution of the e�

distribution function at m � macc is fully determined by adia-

batic cooling: radiative cooling is slower and has a negligible
effect. The adiabatic cooling of the blast wave expanded from
Rdec to a current R̃ is described by the factor A ¼ ( �̃/�0)

1=2

(x 3.3), and the resulting cutoff Lorentz factor is

�c m; R̃
� �

¼ �̃

�0

� �1=2
�c m; Rdecð Þ; R̃ > Rdec: ð95Þ

The corresponding cutoff frequency evolves as 	̃c / �̃B̃�̃ 2
c ,

which gives

	c m; R̃
� �

	c m; Rdecð Þ ¼
�̃

�0

� �3
�B m; R̃
� �

�B m; Rdecð Þ

" #1=2
; R̃ > Rdec: ð96Þ

It can be expressed as a function of tobs using equation (76) for
�̃ and a prescription for the magnetic field evolution in the
blast wave. If the magnetic flux is conserved, �̃1=2B evolves as
t1

=16
obs (eq. [77]), and we get

	c m; tobsð Þ
	c m; tdecð Þ ¼

tobs

tdec

� ��9=8þ1=16

� tobs

tdec

� ��17=16

; tobs > tdec:

ð97Þ

If �B remained constant at all m and R̃, one gets the cutoff
frequency 	c(m; tobs) / t�9=8

obs , almost the same as with flux
conservation.

6.3.2. The Slow-Cooling Condition

A given shell m in a blast wave of radius R̃ is in the slow
cooling regime if �c(m; R̃) > �m(m; R̃). Using equation (22),

�m m; R̃
� �

¼ �

Z� 1þ �ð Þ  
mp

me

; ð98Þ

we find with the flux conservation assumption

	m m; Rdecð Þ
	c m; Rdecð Þ

� �1=2
¼ �m m;Rdecð Þ

�c m;Rdecð Þ

¼ 1:91 ; 106�B 

Z � 1þ �ð Þ½ 	1=2
R

1016 cm

� ��2

;
Eej

1053 ergs

� �
1� R

Rdec

� �
: ð99Þ

Note that n0 and �0 cancel out from this expression. This ratio
remains the same at R̃ > Rdec as both �m(m; Rdec) and �c(m;
Rdec) evolve adiabatically and are reduced by a common factor
A. The effect of the �-ray precursor enters through the factor
Z�1½�(1þ �)	�1/2

, which reduces the ratio.
We are interested in m � macc because L�

	 peaks near macc.
Equation (99) shows that the slow-cooling assumption is valid if

1:91; 106�B 

Zacc

Racc

1016 cm

� ��2
Eej

1053 ergs

� �
< 1; ð100Þ

which can be rewritten as

�B�e < 4 ;10�5 p� 1

p� 2

� �
Racc

1016 cm

� �2
Eej

1053 ergs

� ��1

� 2 ;10�5 p� 1

p� 2

� �
E�

Eej

� �
: ð101Þ

9 The transport coefficient is evaluated assuming isotropic emission from the
forward shock in the blast wave frame. Its dependence on the downstream
Lagrangian coordinate m is weak as long as mTm̃. For example, the contact
discontinuity (m ¼ 0) receives �0.15 of the forward shock emission.
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7. COMPARISON WITH THE REVERSE SHOCK MODEL

We focused in this paper on the forward shock of the GRB
explosion. Early optical radiation is also expected from the
reverse shock in the ejecta if their energy is dominated by
baryons rather than magnetic field (Mészáros & Rees 1993;
Sari & Piran 1999). Explosions with the reverse and e�-loaded
forward shocks should have two soft emission components, and
it is instructive to compare them.

Emission from the reverse shock peaks when it crosses the
ejecta, which occurs at the deceleration radius. Then the explo-
sion Lorentz factor �̃ decreases and the ejecta emission decays.
The decay rate can be calculated as follows. The Lorentz factor
of electrons emitting at a fixed frequency 	obs ¼ (1þ z)	 is

�e ¼ �	 ¼
5	mec

�̃B̃ej

 !1=2

/ B̃ej�̃
� ��1=2

; ð102Þ

where B̃ej is the magnetic field in the ejecta at the current radius
R̃. The number of electrons emitting at frequency 	 is

N	 � Ne �	=�mð Þ�pþ1; ð103Þ

where Ne is the total number of shock-accelerated electrons and
�	 > �m is assumed. With decreasing �̃, N	 is reduced for two
reasons: (1) �	 increases and (2) �m decreases as the whole non-
thermal spectrum is shifted to lower energies by adiabatic cooling.
The adiabatic cooling factor is A/ n1/3ej / P̃1=3�̂ , where �̂ is the
adiabatic index of the ejecta material and P̃ ¼ (4/3)�̃2ñ0�empc

2

is the blast wave pressure, and hence

N	 / ��pþ1
	 Ap�1 / B̃ej�̃

� � p�1ð Þ=2
ñ

p�1ð Þ=3�̂
0 �̃2 p�1ð Þ=3�̂ : ð104Þ

The observed synchrotron flux is given by

FRS
	 ¼ 5 1þ zð Þ

36�2D2

mec
2�T
e

B̃ej�̃N	 /

ñ
p�1ð Þ=3�̂

0 B̃
pþ1ð Þ=2

ej �̃ pþ1ð Þ=2þ2 p�1ð Þ=3�̂ : ð105Þ

If no destruction of magnetic flux takes place, B̃ej evolves as

B̃ej / ñejR̃ / P1=�̂R̃: ð106Þ

Then

FRS
	 / ñ

( 5pþ1)=6�̂
0 �̃( pþ1)=2þ( 5pþ1)=3�̂R̃ pþ1ð Þ=2: ð107Þ

In the case of a uniform ambient medium, ñ0 ¼ const, we have
after the deceleration radius �̃ / t�3=8

obs and R̃ / t
1=4
obs , which yields

FRS
	 / t

�( pþ1)=16�( 5pþ1)=8�̂
obs ¼

t�1:2
obs ; �̂ ¼ 5=3; p ¼ 2:5;

t�1:5
obs ; �̂ ¼ 4=3; p ¼ 2:5:

(

ð108Þ

A destruction of magnetic field in the ejecta could only
steepen the decay.

Themechanism of reverse shock emission is similar to that of
the e� afterglow: a shell of material (ejecta in the case of reverse
shock andmacc in the case of e

�-loaded forward shock) is heated
at R < Rdec with a low energy per particle, and after Rdec the
shell cools down passively (adiabatically), producing a de-
caying flux of soft emission.

The main difference between the two cases is the spectrum of
emitting particles. The reverse shock is thought to produce a

power-law electron distribution with p ¼ 2 3. By contrast, the
effective spectrum of e� has p � 1. In the narrow shell
�m � macc, there are approximately equal numbers of e� at all
energies up to the cooling cutoff, which gives the effective p
about unity. The flat distribution of e� leads to the slow decay of
their synchrotron emission that we found in x 6. The resulting
light curve can, however, be made steeper if the ambient density
decreases with radius or magnetic field is gradually destroyed
downstream of the shock. Therefore, the main intrinsic differ-
ence between the reverse shock and e� emission components is
not the produced light curve but the slope of the e� distribution p.

This difference can be observed directly by measuring the
instantaneous synchrotron spectrum. The e� radiation is ex-
pected to have a small spectral index j
 j < 0:2 while the reverse
shock spectrum is much steeper: 
 ¼ ( p� 1)/2 ¼ 0:5 1 for
p ¼ 2 3. A measurement of the instantaneous spectrum in UV,
optical, or IR at tobs � 100 s would provide a test of the current
theoretical picture of the GRB explosion. Such a test can be done
by Swift.

Finally, we note onemore difference between the reverse shock
and e� emission components. Both are cut off when 	c < 	,
which happens at different times because the cooling frequencies
	c are different in the two cases. The ejecta magnetic field is likely
stronger, Bej > B; then its cooling frequency is lower by the fac-
tor (Bej /B)�3, and hence the cutoff should occur sooner.

8. DISCUSSION

8.1. e� Component of GRB Afterglow

An explosion blast wave is composed of swept-up layers
(shells) of external medium that have been shocked in the for-
ward shock front. In GRB explosions, these layers contain e�

pairs injected into the external medium by the �-ray front. The
layers shocked at small radii R < Rload are dominated by the e�.
At R > Rload, these layers remain in the blast wave and form a
thin e� shell adjacent to the contact discontinuity if there is no
turbulent mixing in the blast. This shell has a low energy per
particle and emits much softer synchrotron radiation compared
to the outer swept-up material. The optical emission of the
expanding blast wave can be strongly dominated by the e� shell
even at large radii where its mass mload is small compared to the
total swept-upmass. If the shockmagnetic parameter �B is below
a critical value �10�3, the optical-emitting e� are in the slow-
cooling regime and radiate their energy slowly, on a timescale
longer than the deceleration time of the explosion. Their effect on
the observed afterglow is described by adding a new emission
component F�

	 .
The e� afterglow component is less sensitive to the model

assumptions than the customary pair-free afterglow. This is
because the e� shell contains approximately equal numbers of
particles with vastly different energies, which is a consequence
of the steep evolution of the �-ray front and e� loading with
radius. This fact allowed us to derive a simple formula for the
observed spectral flux,

F�
	 ¼ 6 ; 10�7�̃2 (1þ z)

D2
28

�̃
1=2
Baccn

3=2
0

E�

1053 ergs

� �3=2

f	 Jy:

ð109Þ

It depends on the blast wave Lorentz factor �̃ that approxi-
mately corresponds to a given observer time tobs. In a broad
range of 	, the flux is dominated by a specific mass shell
m � macc whose shock radius was Racc ¼ 7 ;1015E1=2

�;53 cm. The
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quantity F�
	 depends on the magnetic field in this mass shell,

B̃acc, which we parameterize using the usual equipartition pa-
rameter �̃Bacc (B̃2

acc
/8� divided by the energy density of the blast

wave). Accurate calculations in xx 4 and 5 give the correction
factor f	 � 1 in equation (109). All the details and uncertainties
of the blast wave physics are absorbed by this factor (which is
never much different from unity) and �̃Bacc.

To the first approximation, F�
	 decays after the deceleration

time as �̃2, which is proportional to t�3=4
obs

for an adiabatic blast
wave in a uniformmedium. The decay can, however, be faster if
Bacc is gradually destroyed as the blast wave expands.

8.2. Uncertainties in the Blast Wave Physics

8.2.1. Magnetic Field Downstream of the Shock

The magnetic field behind the shock front and its down-
stream evolution are a major uncertainty of the current blast
wave models. In this paper we assumed, as is customary, that
the magnetic parameter �B immediately behind the shock front
remains constant as the shock expands and followed the down-
stream evolution of �B(m; R̃) assuming conservation of the
postshock magnetic flux. This assumption unambiguously de-
termines the magnetic field in the e� shell, and we found that the
shell is in the slow-cooling regime if the shock parameter �B
is below a critical value �10�3. If �B is above this value, the
e� shell is in the fast-cooling regime and most of its energy is
radiated at tobs < tdec. In this case, the e

� radiation can be visible
at tobs > tdec only in the infrared band; the time of the emission
cutoff depends on frequency as 	�1

obs.
The results are qualitatively similar if �B does not evolve in

the postshock region according to the flux conservation but
instead remains constant (which requires a gradual destruction
of the magnetic flux with increasing distance behind the shock).
However, the results would change if the magnetic flux is de-
stroyed more quickly. The luminosity of the e� shell is pro-
portional to its magnetic field and the field destruction would
give a faster decay of F�

	 .
A real postshock field can be inhomogeneous on small scales

(Medvedev & Loeb 1999) and one may need to include a distri-
bution f (�B) in future afterglow models. This can change de-
tails. For instance, the cooling cutoff would be less pronounced
because the low-�B fraction would continue to radiate in the
slow-cooling regime and give a tail of emission even whenmost
of the postshock plasma is cooled and does not emit at the
observed frequency.

8.2.2. Turbulent Mixing

The e�-dominated material may not form a distinct thin shell
near contact discontinuity if there are large-scale turbulent mo-
tions that mix up the postshock layers. Rayleigh-Taylor insta-
bility can drive such mixing like it does in supernova remnants.
Themixing is unlikely to change the results of this paper. As long
as we approximate the blast wave as a constant-pressure shell,
the pressure in an e�-dominated gas element does not depend on
its position within the blast wave. Therefore, its adiabatic and
radiative cooling is the same as in the absence of turbulent mix-
ing, and conservation of magnetic flux gives the same magnetic
field in the element.

8.2.3. Mechanism of Electron Acceleration

A significant uncertainty in the afterglow physics is the
mechanism of electron acceleration. A preshockmagnetic field is
compressed in the relativistic shock and becomes transverse, and
the fields generated by Weibel instability are also transverse—

parallel to the shock plane (Medvedev & Loeb 1999). Standard
diffusive acceleration is unlikely to be efficient under such con-
ditions. It requires the electron to cross the shock front many
times, which can hardly happen: the upstream diffusion across
the transverse field is slow because the electron gyroradius is
smaller than the front thickness (proton gyroradius), and the
electron will be advected downstream with the flow velocity c/3
with respect to the front before it gets a chance to diffuse back to
the upstream region.
An alternative mechanism is stochastic acceleration by tur-

bulence downstream of the shock. It may not be well described
as impulsive acceleration and may keep electrons energetic
even in the presence of significant radiative or adiabatic losses.
This could change the theoretical afterglow light curve.
However, the main signature of e� emission (white spec-

trum) will likely persist because the blast wave will still have a
steep variation of e� density with the Lagrangian coordinate m,
which invariably leads to the broad e� distribution with p � 1.
This special feature ultimately comes from the �-ray front
evolution with radius and is not related to the mechanism of e�

acceleration.

8.2.4. Electron Distribution Function

Customary afterglow calculations assume an idealized dis-
tribution function of the postshock electrons: all electrons re-
side in a power-law component that starts at �m and ends at �c.
In reality, it is possible that only a small fraction of electrons �e
are accelerated in a shock wave and the rest of them form a
quasi-Maxwellian distribution; this is observed to be the case
for collisionless shocks in the solar system. The expected en-
ergy of the accelerated electron population �e is then typically
�1% of the total plasma energy (which is dominated by the hot
ions). Similar electron acceleration was inferred for supernova
shocks. By contrast, �e inferred from the existing fits of GRB
afterglows is �e � 0:1 (e.g., Panaitescu & Kumar 2002).
We point out that the high �emay have been inferred because

the fits assume �e ¼ 1. Equally good fits may be obtained with a
more reasonable �e � 0:1 and �e � 0:01. This can be under-
stood by looking at how the parameters enter the emission
model. Besides the spectral slope p, the emitting electrons are
described by two parameters: the number of accelerated par-
ticles Ne ¼ �eNt (where Nt is the total number of swept-up
particles) and the minimum nonthermal Lorentz factor �m. Note
that �mmec

2 is comparable with the mean energy per electron,
which is proportional to �e/�e. Relaxing the assumption �e ¼ 1,
one can get the same �m by decreasing �e / �e, and then the
same observed emission may be explained with 10 times lower,
and physically more plausible, values of �e and �e. The number
of emitting particles Newill not be changed if Nt is increased by
the factor ��1

e . Thus, the reduction of �e implies a higher am-
bient density and the circumburst density may have been sys-
tematically underestimated in the afterglow fits by 1 order of
magnitude.
Different assumptions concerning the shape of electron dis-

tribution function can lead to different afterglow radiation. How-
ever, the e� afterglow component is almost insensitive to such
assumptions. For illustrative purpose, consider an extreme case.
Suppose there is no power-law acceleration at the shock front,
and the shock produces a narrow e� distribution peaking at
�e(R) � �e(mp/me)�(�Z )

�1. The factor �Z is determined by the
�-ray transfer through the ambient medium and has the robust
steep dependence on R near Racc (x 2). Therefore, �e will de-
pend steeply on R, and the resulting e� distribution in the shell
�m � macc swept-up near Racc will be broad and flat. The same
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formula (eq. [109]) will describe the e� radiation with a slightly
different numerical factor f	 � 1.

8.3. Prospects of Detection of e� Emission

The e� radiation is predicted to have a special feature that can
be tested with upcoming observations: its spectral index 
 is
close to zero (j
 jP 0:2). This is a significant difference from the
reverse shock model, which predicts a steeper spectrum, 
 ¼
( p� 1) /2, where p ¼ 2 3 is a putative slope of the electron
distribution. Although the early optical emission has already
been caught in a few bursts, no spectral data are presently
available. Swift can provide the valuable spectral information.

The e� dominance of the early UV/optical/IR afterglow can
result in a characteristic two-peak shape of the light curve (see
an example in Fig. 3). The e� emission component begins to
decay at the deceleration time (eq. [74]), which can be before
Swift detects the afterglow. However, its decay is relatively
slow (F�

	 / �2 / t�3=4
obs in the first approximation) and its tail is

observable on timescales of minutes until the pair-free com-
ponent takes over. The e� radiation should be visible for a
longer time in the infrared band.

To date, early optical emission (tobs < 1000 s) has been de-
tected in four bursts: GRB 990123, GRB 021004, GRB 021211,
and GRB 030418. In only one of them, GRB 990123, the peak
of the optical flash was caught (Akerlof et al. 1999). This peak
overlapped with the prompt MeV burst, and hence the model
developed in the present paper does not apply to GRB 990123:
the e�must be Compton cooled by theMeV photons (keVin the
fluid frame), and most of the e� energy is likely emitted in the
GeV–TeV band (Beloborodov 2005). The strong optical e�

radiation is expected in bursts where the MeV radiation front
completely overtakes the blast wave by the time it reaches Racc

as discussed in x 1.

8.4. Neutron Front

We studied in this paper the pair-loading effects on the for-
ward shock. If the ejecta contains baryons, i.e., is not a pure
electromagnetic outflow (Poynting flux), a significant fraction
of the baryons must be free neutrons (Derishev et al. 1999;
Beloborodov 2003b). The neutron ejecta get completely de-
coupled and coast freely by the beginning of afterglow emission
with a Lorentz factor �n � �ej. They gradually �-decay; how-
ever, some neutrons survive until radii R � 1017 cm when the
blast wave may have already decelerated, overtake the blast
wave, and decay ahead of it depositing significant momentum
and energy into the ambient medium (Beloborodov 2003a).
Thus, GRB explosions are likely to develop leading neutron
fronts that change the mechanism of the blast wave.

The neutron front may emerge either after the e� loading, at
R > Rload, or at smaller radii, depending on the presence of fast
neutrons with �n > �. The impact of a fast neutron front on the
early afterglowwas recently studied by Fan et al. (2004), and an
alternative scenario with slow neutrons was proposed by Peng
et al. (2004). Accurate afterglow calculation that includes both
the neutron decay and e� loading is a challenging theoretical
problem that may be solved in the future. We expect the main sig-
nature of e� loading—soft emission with a broad flat spectrum—
to be present in neutron-fed afterglows as well.
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APPENDIX

CALCULATION OF L�
	 INTEGRAL

We here calculate the integral L�
	 neglecting the cooling cutoff of the e� distribution function (i.e., assuming 	̃c > 	; 	̃m). Then,

�L	
�m

¼ �Lmax
	

�m

	

	̃m

� �1=3

; 	̃m � 	;

	

	̃m

� � 1�pð Þ=2
; 	̃m � 	;

8>>><
>>>:

ðA1Þ

�Lmax
	

�m
m; R̃
� �

¼ w R̃
� �

�̃
1=2
B

Z

�e
; w R̃

� �
¼ 30

ñ0�e
�̃ 1þ �̃
� �

" #1=2
ergs g�1: ðA2Þ

We have written �Lmax
	 /�m in this form to separate quantities that do not depend on the Lagrangian coordinate (functions of the

current radius R̃ only) and are constant in the L�
	 integral. In a similar way, we rewrite the expression for 	m(m; R̃) (eq. [65]),

	m m; R̃
� �

¼ q R̃
� � �̃

1=2
B �

n
1=2
0 � 1þ �ð Þ½ 	3=2 Z=�eð Þ2

; q R̃
� �

¼ 4:6 ;1012
�̃3ñ0�

1=2
e  2

�̃ 1þ �̃
� � Hz: ðA3Þ

Since 	̃m(m) ¼ 	m(m; R̃) is a monotonic function of the Lagrangian coordinate 0 < m < m1, we can change the integration variable
to 	m,

L�
	 ¼

Z m1

0

�L	
�m

dm ¼
Z 	̃1

0

�L	
�m

@	m
@m

� ��1

R̃

d	m; ðA4Þ
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where 	̃1 is the peak frequency of synchrotron emission at m1,

	̃1 ¼
	m m̃; R̃
� �

¼ 4:6 ; 1012
�̃4ñ

3=2
0

�̃ 1þ �̃
� �
 �5=2

Z̃ 2
�
1=2
B  2�5=2e Hz; R̃ � Rload;

	m mload; R̃
� �

; R̃ � Rload:

8>><
>>: ðA5Þ

The partial derivative of 	m can be written as

@	m
@m

� �
R̃

¼ 	m
m

@ ln 	m
@ lnm

¼ 	m
m

@

@ lnm
ln

�̃
1=2
B �

n
1=2
0 1þ �ð Þ3=2

" #
� @

@ lnm

Z 2

�2
e

�3=2
� �( )

: ðA6Þ

The quantity Z2� 3/2 varies with m much faster than �̃1=2B �n�1=2
0 (1þ �)�3=2 (in the latter, only � could vary significantly, but even

that does not happen for explosions with Rdec > Racc). Therefore, the second term in equation (A6) is dominant, and the first term
can be neglected. Then,

@ ln 	m
@ lnm

� � @

@ lnm

Z 2

�2
e

�3=2

� �
¼ � @ ln R

@ lnm

@ ln �

@ ln R

d

d ln �

Z 2

�2
e

� 3=2

� �
¼ � 2

k

d

d ln �

Z 2

�2
e

� 3=2

� �
: ðA7Þ

The expressions Z/�e and � are given as functions of � in equations (4) and (5), and we find

@	m
@m

� �
R̃

¼ 	m
m

s

k

10�(m)

�acc
; m � macc;

17

2
; m � macc:

8>><
>>: ðA8Þ

Using equations (A1) and (A2), we get

L�
	 	; R̃
� �

¼ w R̃
� � Z 	̃1

0

�̃
1=2
B

Z

�e

	m
	

� 	�1=3
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� 	 p�1ð Þ=2
	m � 	

8><
>:
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>;

@	m
@m

� ��1

R̃

d	m: ðA9Þ

The quantity Z needs to be expressed as a function of 	m. From equations (4) and (5),

� ¼
1; Z=�e � e5=2 � 74;

2Z=e5�eð Þ3=2; Z=�e � e5=2;

(
ðA10Þ

which we substitute into equation (A3) and then express Z from that equation,

Z

�e
¼

	m 1þ �ð Þ3=2n1=20 q�1�̃
�1=2
B ��1

h i�1=2
; m 	mð Þ � macc;

	m 1þ �ð Þ3=2n1=20 q�1�̃
�1=2
B ��1

h i�4=17
749=17; m 	mð Þ � macc:

8><
>: ðA11Þ

The quantities n0, �̃B, and � vary with m and therefore vary with 	m when 	m is chosen as the independent variable. However, their
variation with 	m is slow (because 	m is a steep function of m). Therefore, with sufficient accuracy, we have Z / 	�1=2

m at m(	m) >
macc and Z / 	�4=17

m at m(	m) < macc.
Now the integral given by equation (A9) can be calculated. We consider first R̃ � Racc and then R̃ � Racc.

A1. R̃ � Racc

At radii R̃ < Racc the Lagrangian coordinate m � m̃ < macc; then @ ln 	m /@ lnm ¼ (17/k) and Z / 	�4=17
m .

For 	 > 	̃1 we have 	m < 	 in the whole blast, and the integral given by equation (A9) reads

L�
	 	; R̃
� �

¼ w R̃
� � k

2
�
1=2
B

Z1

�e
m1

	

	̃1

� � 1�pð Þ=2
4

17p� 25ð Þ ; 	 � 	̃1;
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where Z1 � Z(m1) and we have used Z /Z1 ¼ (	m /	̃1)
�4=17. We also used the fact that �̃1=2B and m vary slowly with 	m and took them

as constants evaluated at 	m ¼ 	̃1 where the integral peaks.
For 	 < 	̃1 the integral can be written as a sum of two integrals over 	m < 	 and 	m > 	. Both integrals peak at 	m ¼ 	. We denote

m� ¼ m(	m ¼ 	), Z� ¼ Z(m�), and �̃B� ¼ �̃B(m�), use Z /Z� ¼ (	m /	)�4=17, and get

L�
	 	; R̃
� �

¼ w R̃
� � k

2
�̃
1=2
B�

Z�

�e
m�

4

17p� 25
þ 6

29
1� 	

	̃1

� �29=51
" #( )

; 	 � 	̃1: ðA12Þ

We used again the slow variation of m and �̃B with 	m and replaced m by m� and �̃B by �̃B�.

A2. R̃ � Racc

At radii R̃ > Racc, the blast wave material has shells with mass coordinate 0 < m < macc and macc < m < m̃. The L�
	 integral is

taken over 0 < m < m1 ¼ minfm̃; mloadg.
For 	 > 	̃1 the integral is given by

L�
	 	; R̃
� �

¼ w R̃
� � Z 	̃1

0

�̃
1=2
B

Z

�e

	m
	

� 	 p�1ð Þ=2k

2

�acc
10�

m > macc

2

17
m < macc

8>><
>>:

9>>=
>>;m

d	m
	m

: ðA13Þ

Let us denote

	̃acc R̃
� �

� 	m macc; R̃
� �

: ðA14Þ

We have Z / 	�4=17
m at 	m < 	̃acc and Z / 	�1=2

m at 	m > 	̃acc. It is convenient to calculate the integral as a sum of two integrals over
	m < 	̃acc and 	m > 	̃acc. The first integral peaks at 	m ¼ 	̃acc and the second at 	m ¼ 	̃1. We then find

L�
	 	; R̃
� �

¼ w R̃
� � k

2

	

	̃1

� � 1�pð Þ=2
(
�̃
1=2
Bacc

Zacc

�e
macc

4

17p� 25

	̃acc
	̃1

� � p�1ð Þ=2

þ �̃
1=2
B1

Z1

�e
m1

�acc
5 p� 2ð Þ�1

1� 	̃acc
	̃1

� � p�2ð Þ=2
" #)

; 	 � 	̃1; ðA15Þ

where Zacc � Z(macc) ¼ 74�e, �̃Bacc � �B(macc; R̃), and �̃B1 � �B(m1; R̃). As soon as the blast wave radius exceeds Racc, we have
almost immediately 	̃accT	̃1 (The frequency 	̃1 increases exponentially with R̃ between Racc and Rload.) Then the terms with 	̃acc /	̃1 can
be neglected. (These terms are needed only to match smoothly the formula with the results obtained at R̃ < Racc.)

Next, consider intermediate 	 in the range 	̃acc < 	 < 	̃1. Then the integral is calculated as a sum of three integrals over
0 < 	m < 	̃acc, 	̃acc < 	m < 	, and 	 < 	m < 	̃1. In the first interval we use Z /Zacc ¼ (	m /	̃acc)

�4=17, and in the other two intervals
Z /Z� ¼ (	m /	)�1=2, where the asterisk refers to the point 	m ¼ 	. We thus get

L�
	 	; R̃
� �

¼ w R̃
� � k

2

(
Zacc

�e
�̃
1=2
Baccmacc

4

17p� 25

	̃acc
	

� � p�1ð Þ=2
þ Z�

�e
�̃
1=2
B� m�

�acc
��

1

5 p� 2ð Þ 1� 	̃acc
	

� � p�2ð Þ=2
" #

þ Z�
�e
�̃
1=2
B� m�

�acc
��

3

25
1� 	

	̃1

� �5=6
" #)

; 	̃acc � 	 � 	̃1: ðA16Þ

Finally, at low 	 < 	̃acc, the integral is calculated as a sum of three integrals over 0 < 	m < 	, 	 < 	m < 	̃acc, and 	̃acc < 	m < 	̃1. In
the first two intervals we use Z /Z� ¼ (	m /	)

�4=17, and in the last interval Z /Zacc ¼ (	m /	̃acc)
�1=2,

L�
	 	; R̃
� �

¼ w R̃
� � k

2

(
Z�

�e
�̃
1=2
B� m�

4

17p� 25
þ Z�

�e
�̃
1=2
B� m�

6

29
1� 	

	̃acc

� �29=51
" #

þ Zacc

�e
�̃
1=2
Baccmacc

3

25

	

	̃acc

� �1=3

1� 	̃acc
	̃1

� �5=6
" #)

; 	 � 	̃acc: ðA17Þ
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A3. Z� AND m�

The above formulae for L�
	 should be made explicit by expressing m�, ��, and Z� in terms of 	 and R̃.

Equation (A11) gives Z(	m), and we get Z ¼ Z� at 	m ¼ 	,

Z�
�e

¼
	 1þ ��ð Þ3=2n1=20� q�1�̃

�1=2
B� ��1

�

h i�1=2
; m� > macc;

	 1þ ��ð Þ3=2n1=20� q�1�̃
�1=2
B� ��1

�

h i�4=17
749=17; m� < macc:

8><
>: ðA18Þ

All quantities with asterisks are taken at R ¼ R� (	m ¼ 	). Since R� is very close to Racc (see eq. [A23]), it is sufficient to use the
first approximation R� ¼ Racc in the equation for Z�. Then we get

Z�
�e

¼
�; 1 < � < 74;

74
�

74

� �8=17

; � > 74;

8><
>: ðA19Þ

where

� 	; R̃
� �

¼ 	n
1=2
0acc

q�̃
1=2
Bacc�acc

 !�1=2

; ðA20Þ

and the subscript ‘‘acc’’ marks that the quantity is taken at m ¼ macc.
Note that

� ¼ 74
	

	̃acc

� ��1=2

ðA21Þ

at R̃ � Racc.
The relation between � and Z is given by equation (4), and we find ��,

��
�acc

¼

1

5
ln �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p� 	
; 1 < � < 74;

�

74

� �4=17

; 74 < � < 8 ;103:

8>><
>>: ðA22Þ

(Here � ¼ 8 ; 103 corresponds to �� ¼ 3�acc.) Using the relation between R and � (eq. [3]), we get

R�

Racc

¼

1

5
ln 2�ð Þ

� ��1=2

; 1 < � < 74;

�

74

� ��2=17

; 74 < � < 8 ;103;

8>>><
>>>:

ðA23Þ

where we took �þ (�2 � 1)1=2 � 2�. The corresponding m� is

m�

macc

¼ R�

Racc

� �k

¼ ��
�acc

� ��k=2

: ðA24Þ

A4. FINAL RESULT

The terms with �̃1=2Bacc are nonnegligible when 	 � 	acc and m� � macc; therefore, one can replace �̃1=2Bacc by �̃
1=2
B� and simplify the

derived expressions. The final result is as follows:

L�
	 	; R̃
� �

¼ 30
ñ0

�e�̃ 1þ �̃
� �

" #1=2 Q�m�Z��̃
1=2
B� ; 	 � 	̃1;

Q1m1Z1�
1=2
B

	

	̃1

� � 1�pð Þ=2
; 	 � 	̃1;

8><
>: ðA25Þ
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Q� 	; R̃
� �

¼ k

2

4

17p� 25
þ 6

29
1� 	

	̃1

� �29=51
" #( )

; R̃ � Racc; ðA26Þ

Q� 	; R̃
� �

¼ k

2

3p� 1ð Þ
25 p� 2ð Þ

�acc
��

þ 	̃acc
	

� � p�1ð Þ=2
4

17p� 25

macc

m�
� 1

5 p� 2ð Þ
�acc
��

� �
� 	

	̃1

� �5=6
3

25

�acc
��

( )
; R̃ � Racc; 	̃acc � 	 � 	̃1;

ðA27Þ

Q� 	; R̃
� �

¼ k

2

4

17p� 25
þ 6

29
þ 	

	̃acc

� �29=51
3

25

macc

m�
� 6

29

� �
� 3

25

macc

m�

	

	̃acc

� �29=51 	̃acc
	̃1

� �5=6
( )

; R̃ � Racc; 	 � 	̃acc � 	̃1;

ðA28Þ

Q1 	; R̃
� �

¼ k

2

4

17p� 25
; R̃ � Racc; ðA29Þ

Q1 	; R̃
� �

¼ k

2

1

2 p� 1ð Þ
�acc
�1

þ 	̃acc
	̃1

� �p=2�1
4

17p� 25

macc

m1

� 1

2 p� 1ð Þ
�acc
�1

� �( )
; R̃ � Racc: ðA30Þ

The ratios �� /�acc and m�/macc appearing in the expressions for Q� at R̃ > Racc are given by

m�

macc

� ��s=k

¼ ��
�acc

¼
1� 0:1 ln

	

	̃acc

� �
; 	 � 	̃acc;

	

	̃acc

� ��2=17

; 	 � 	̃acc:

8>>><
>>>:

ðA31Þ

In this paper we are interested in R̃ > Racc and 	 < 	̃1. Then

L�
	 ¼ 30 �̃B�ñ0ð Þ1=2Q�m�Z�; ðA32Þ

and the numerical factor f	 defined in equation (67) is given by

f	 ¼ Q�
m�Z�

maccZacc

�̃B�
�̃Bacc

� �1=2

: ðA33Þ

This factor is shown in Figure 9 assuming �̃B� ¼ �̃Bacc.
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